
!
!
!

Using JSON Schema
!
!
!

Learn and Apply JSON Schema by Example,
with Javascript (Node.js) and Python Programs

!
Featuring JSON Schema draft 4

!
!
!

Joe McIntyre!
!

!
!
!
!
!
!

For Liz 

"ii

Copyright

Copyright © 2014 by Joe McIntyre. All rights reserved.!
!
First edition: July, 2014!
!
All trademarks used in this book belong to their respective owners.!

Source Code Licenses
The book contains Javascript, and Python source code. There are external libraries that are used by
some of the programs. The following are the licenses that apply to each of these.!

Tiny Validator (for v4 JSON Schema)

Tiny Validator (for v4 JSON Schema), packaged in the file tv4.js, is made available under a public
domain license. The source is available at,!

https://github.com/geraintluff/tv4!
The license is available at,!

https://github.com/geraintluff/tv4/blob/master/LICENSE.txt!

jsonschema 2.3.0

A JSON Schema library for Python, made available under a MIT license. The source is available at,!
https://github.com/Julian/jsonschema!

The license is available at,!
https://github.com/Julian/jsonschema/blob/master/COPYING!

jsonlint

A JSON parser made available under a MIT license. The source is available at,!
https://github.com/zaach/jsonlint!

The license is available at,!
https://github.com/zaach/jsonlint/blob/master/README.md!

Book Content

All Javascript and Python source code in the book text, and in the set of files accompanying the book, is
made available under the following MIT license.!

The MIT License (MIT)  
 
Copyright (c) 2014 Joe McIntyre  
 
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,

"iii

https://github.com/geraintluff/tv4
https://github.com/geraintluff/tv4/blob/master/LICENSE.txt
https://github.com/Julian/jsonschema
https://github.com/Julian/jsonschema/blob/master/COPYING
https://github.com/zaach/jsonlint
https://github.com/zaach/jsonlint/blob/master/README.md

including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:  
 
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.  
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.!

This license is also provided as a file in the accompanying materials, available in each of the project
repositories on GitHub. See the top level project for a list of the repositories,!

https://github.com/usingjsonschema 

"iv

https://github.com/usingjsonschema

Preface

Some software technologies find themselves being used in a variety of contexts, useful without being
cumbersome. They get widely used, don't get a reputation as being 'force-fit', and endure. JSON is
emerging as one of those technologies.!
In the message exchange space, JSON is commonly used in implementing RESTful web services. Its
broad use reflects the flexibility of JSON formatted content to support iterative definition for message
exchanges between systems, coexistence with a range of technologies, and ease of understanding.!
A broad cross section of software programs include configuration files. Often these configuration files
are supplemented by command line argument support, environment variables, and/or integration
with external configuration systems. Over time, the complexity of software configuration has grown
with the increasing use of networked resources and greater levels of customization for users. This has
led to the evolution of configuration definitions to more flexible technologies such as JSON and XML.!
Often the choice of configuration technology is related to the programming language, runtime, or
operating system chosen for the program. However, many programs have cross platform
requirements (now including supporting cloud deployments), and may have multiple runtimes
operating different portions of the overall system. Thus, it is very desirable for the configuration
technology to have support across languages and environments. The inclusion of Javascript (Node.js
and web browser uses) and Python examples, for multiple operating systems, shows integration of
JSON and JSON Schema with different runtimes.!
In addition to configuration files, many programs also have data management requirements. While
some programs have requirements suitable for using databases, others have more modest needs and
are better suited to the flexibility of using JSON files. However, for JSON suited programs, as the
content expands (both in the structure of the data model as well as the amount of data stored), there
is greater risk of data consistency errors. Also, as is the case with many configuration files, updates to
the data may be made with text editing tools and are subject to errors – often minor. Finding these
errors is often more work than correcting them – a missing comma, misplaced closing } or], or a typo
in a keyword. Fortunately, there are two tools that address this well,!

• JSON syntax checkers, which find syntax errors.!
• JSON Schema, and its affiliated validation tools, which find content errors.!

As JSON has gained support across a broad array of programming languages / runtime platforms,
the use of JSON formatted files for configuration files and similar uses is now an available option for
many projects.!
JSON and JSON Schema are strong foundational technologies, with many avenues for building
interesting and useful capabilities around them. Hopefully the examples spur some new design ideas
in your projects.!

"v

Web Resources
The Using JSON Schema website (http://usingjsonschema.com) provides download facilities for the book
materials, links to the source code projects, and ongoing information on the topics covered in this
book.!
The JSON Validate website (http://jsonvalidate.com) hosts the online version of the validation tool
provided.!
Source code for all programs and examples is hosted on GitHub, under the usingjsonschema project
(https://github.com/usingjsonschema). A navigation page is also available at https://
usingjsonschema.github.io for the repositories.!

Audiences
For those designing and implementing software, this book provides knowledge of the JSON and
JSON Schema technologies, along with examples of how to incorporate their use in a variety of
programs.!
For those configuring, deploying, and maintaining software that incorporates JSON content, the book
covers use of JSON and JSON Schema content, enabling reading and understanding of content, and
utilizing JSON Schema to improve validation of data completeness and correctness.!

What this Book Covers
The book provides an introduction to JSON and JSON Schema from a usage point of view. Using
practical examples, the technologies are presented as they are incorporated in the examples.!
JSON has been a published specification since July 2006. JSON Schema however is still going through
the specification process, and this book uses draft-04 which was made available in January 2013 and at
the time of publication is the current version. While the next revision of JSON Schema will be
published, the existing schemas and tools will coexist with the next version for some time.!

Required Knowledge, Equipment and Software
No prior experience with JSON or JSON Schema is required.!
The program source code provided uses Javascript / Node.js and Python. Basic familiarity with
Javascript or Python is expected, but general computer programming knowledge will suffice for
understanding the program logic. A short introduction to Node.js is included in Appendix C that covers
the additional features it brings to the Javascript environment.!
To use the technologies presented, a computer running Windows, Linux, OS X, or a Unix variant can
be used. JSON and JSON Schema content can be created and edited with any text editor.!

• When a web browser or web page is referenced, any current web browser can be used.!
• Each source code program is shown using Javascript on the Node.js platform and using Python.

Both versions are equivalent in function.!
• Information on downloading and installing Node.js is covered in Appendix C.!
• Information on downloading and installing Python is covered in Appendix D.!

"vi

http://usingjsonschema.com/
http://jsonvalidate.com/
https://github.com/usingjsonschema
https://usingjson/
https://http://usingjsonschema.github.io

All the software referenced is available without charge. Use of other software that performs
equivalent tasks may have licensing requirements, please check with the supplier of the software.!

Acknowledgments
The availability of JSON and JSON Schema as freely available specifications is credited to the authors,
contributors, and supporters of the specifications/drafts, and the Internet Engineering Task Force
(IETF).!
The Tiny Validator (for JSON Schema v4) by Geraint Luff, and jsonschema by Julian Berman, are JSON
Schema validation libraries referenced throughout the book. The ease of learning, and experimenting
with, JSON Schema are greatly enhanced by these works. The jsonlint library by Zachary Carter
provides a consistent parsing interface, allowing parser messages and errors to be presented across
browsers.!
The Stack Overflow community, for the wealth of useful bits of information that fill in obscure gaps
across so many topics. No matter how odd a place you have ended up in, Stack Overflow often
proves that someone else beat you there!!

Conventions Used in the Book
In technical descriptions and examples, references to technologies, programs, screen items, and
similar cases, will use italics to distinguish them. For example, JSON Schema uses italics as a reference
name. !
Text intended for use in an operating system command, text editor or similar use will be shown with
a distinct font. An example of JSON content follows.!

{
 "name":"Server 14",
 "address":"192.168.1.24",
 "port":80,
}

The text shown is the content only. On the screen, other content such as prompts or the user interface
for a text editor will be displayed.!
If the content is operating system commands, each line can be entered and the Enter key pressed at
the end of each line to execute each command. When operating system commands differ between
operating systems, the commands will be shown for each operating system. Only use the version
relevant for your operating system. Note that the Linux version of the command will also be
applicable for OS X and for Unix based operating systems.!

Using the Programs Provided
There are two styles for invoking the programs provided. The first style are launched using the
Node.js or Python launcher. The second style are packaged for invocation as programs.!

Launching Using Script Syntax

Some of the examples are provided for invocation by the language runtime. The format for the
command to run the example is <runtime> <program> <arguments> such as,!

node additionService.js -p=8303

"vii

For Javascript programs, the Node.js runtime is used with the node command. For some operating
systems, nodejs will be used instead of node for the runtime name (the name node overlaps with
another program that uses the same name). For example,!

nodejs additionService.js -p=8303

For Python, some platforms use python for the default version, but also support python3 to allow
specifically running the program with the Python 3.x runtime. All programs provided should operate
correctly for either version.!
For any command that starts with node, nodejs can be substituted when applicable for your platform.!
For any command that starts with python, python3 can be substituted when applicable.!

Launching Using Program Syntax

The syntax checker and schema validation programs are packaged as programs that can be invoked
from a command prompt or script. In each case, the name will execute a shell script (Linux, OS X,
Unix) or command file (Windows) that will start the corresponding program. The syntax for the
command is <program> <arguments> such as,!

validate simpleObjectValid.json simpleObject_schema.json

If you only use one of either the Javascript or Python versions of the programs, then the commands can
be used as shown. If you install both the Javascript and Python versions, then the operating system
will execute the first program in its program search path. To execute a specific version, add the letter
n for the Javascript / Node.js version or p for the Python version. For example,!

validaten simpleObjectValid.json simpleObject_schema.json

The above command executes the Javascript / Node.js version specifically, and the command below
executes the Python version specifically.!

validatep simpleObjectValid.json simpleObject_schema.json

The version of the Python runtime, if you have multiple versions installed, will be determined by the
configuration present. For instance, on Windows, the system PATH environment variable.!

Acquiring and Installing the Accompanying Materials
The book contains samples and example programs. The source code for these is available to install
locally and access online. Online access to all materials is available through the Using JSON Schema
page at,!

http://usingjsonschema.com!
On GitHub, a project navigation page is available at,!

https://usingjsonschema.github.io!
The GitHub project repository page can also be accessed at,!

https://github.com/usingjsonschema!
Instructions for downloading the materials and installing the programs are in Appendix A.!
The example programs use Node.js and Python runtime platforms. You can choose to use either, or
both. For instructions on installing Node.js, see Appendix C. For instructions on installing Python, see
Appendix D. 

"viii

https://usingjsonschema.com/
https://usingjsonschema.github.io/
http://usingjsonschema.github.io/
http://usingjsonschema.github.io/
http://usingjsonschema.github.io/

Table of Contents

Copyright! iii!...
Source Code Licenses! iii!...

Preface! v!...
Web Resources! vi!..
Audiences! vi!..
What this Book Covers! vi!..
Required Knowledge, Equipment and Software! vi!...
Acknowledgments! vii!..
Conventions Used in the Book! vii!..
Using the Programs Provided! vii!...
Acquiring and Installing the Accompanying Materials! viii!...

Table of Contents! ix!..
1. Introduction! 1!..

Use of Schema Definitions! 1!..
Benefits of Using a Schema! 2!...
What A Schema Does Not Do! 2!..
Validation as a Process! 3!..

2. JSON! 4!..
Structure of JSON Content! 4!...
JSON Single Object! 4!..
JSON Multiple Object Types! 6!..
JSON Array! 7!...
JSON Named Array! 8!...
JSON Multiple Object Types and Arrays! 10!..
Syntax Checking JSON Content! 11!...

3. JSON Schema! 16!..
Constructing a Schema! 16!..
Structure of a JSON Schema Definition! 17!..
Style! 17!..
Values for the “$schema” Element! 17!..
JSON Schema Empty Structure! 18!..
JSON Schema Examples and Validation Tools! 18!..
JSON Schema for a Simple Object (3A)! 21!..
Content Constraints for the Simple Object (3B)! 23!..

"ix

JSON Schema for an Array (3C)! 24!..
JSON Schema for a Named Object (3D)! 25!...
JSON Schema for Mixed Objects and Arrays (3E)! 26!..
Patterns for Properties (3F)! 27!...
Dependencies for Properties (3G)! 29!...
Choices: allOf, oneOf, anyOf (3H)! 31!...
AllOf! 31!..
OneOf! 32!..
AnyOf! 34!..
The Negative Constraint: not! 35!...
Object and Array Constraints (3I)! 36!...
Value Constraints (3J)! 40!..
JSON References (Internal) (3K)! 48!..
JSON References (External) and the id Keyword (3L)! 50!...

4. Conditional Content! 60!..
Mutually Exclusive Properties! 60!...
Dependent Properties! 61!..
Selector Driven Schemas! 62!...
Alternative Implementations for Selector Driven Schemas! 65!..
Uses for the Conditional Content Approaches! 66!..

5. Configuration Files! 67!..
Example Configuration File! 67!...
Programs Consuming the Configuration File! 68!...
Summary! 73!...

6. Simple Data Management! 74!..
Usage Examples! 74!...
Capabilities for Simple Data Management! 74!..
Example: Organization and Employee Data! 75!...
Valid Data, Invalid Cross-Reference! 78!...
Additional Custom Validation! 79!...
Custom Validation Processor! 79!...
Validation Data Examples! 86!..
Persistent State Validation Versus In Flight Validation! 87!..
Growing Into a Database! 88!..
Domain Specific Validators! 88!..

7. Designing Software for JSON Message Exchange! 90!..
Implementing Programs that use JSON Message Exchange! 90!...

"x

!

Javascript / Node.js Implementation! 92!...
Python Implementation! 98!..
Validation Proxy Server! 103!..

8. Command Line Validation Tool! 110!...
Entry Point: main.js / main.py! 110!...
Validation Processing: validate.js / validate.py! 113!..
Using the Tools in Shells and Scripts! 123!..

9. Designing Software to Use JSON Files! 126!...
Validation in Programs! 126!...
In Memory State of JSON Content! 126!..
Persistent State Choices! 127!..
Program Interaction Models for Persistent Storage! 128!..
Persistent Storage of JSON Content! 129!..
Recovery Enabled File Storage! 131!..
Library: safeFile! 133!..
Example: Using Robust Configuration File Capabilities! 146!...
Multiple Data File Programs! 149!..

Appendix A: Installing the Book Materials! 150!..
Installing the Syntax and Validation Tools! 150!...
Using Git to Access the Projects! 150!...

Appendix B: Resources! 152!...
JSON Schema Resources! 152!...
ECMAScript Resources! 152!...
Postal Address Resources! 152!...

Appendix C: Node.js Installation and Introduction! 153!...
Node.js Installation! 153!..
Introduction to Node.js! 154!...

Appendix D: Python Installation! 156!...
Python Package Management! 156!..

About the Author! 157!...
Other Publications by the Author! 157...

"xi

1. Introduction

JSON (Javascript Object Notation) and JSON Schema provide two essential building blocks for data
definition that are easy to use, consume, and evolve. They can be utilized in transient and persistent
scenarios, and have a broad range of uses.!
Where JSON defines the syntax for the data content, JSON Schema complements it with content
definition. This combination provides an easy to use validation capability that improves ease of use,
supports automated testing and content creation, and reduces support complexity.!
JSON is usable as a standalone technology, or as a contributing technology in contexts defined by its
implementing technology.!
For message exchange, JSON provides a flexible structure for data packaging. This allows data
definitions that can address the a broad range of content. From free-form exchanges, such as web
content, to formal data definitions suited for exchange of commercial data.!
In the software space, configuration files (and similar storage alternatives) are a staple for many
software programs, providing customization capability that is easy to understand, describe, and use.
There are many formats to choose from, and various decision criteria that guide the choice of format.
JSON provides a portable, flexible definition, that is supported by a wide variety of platforms, tools
and libraries. It also has an advantage in distributed environments, since configuration objects can be
exchanged using the same format between systems, even if they are not using the same operating
system, platform, or programming language.!
In data management scenarios, JSON and JSON Schema can be used in prototyping and small scale
solutions as a standalone technology. However, for production or use as the solution grows, the data
definition capability can be reused as the storage functions transition to database or other
technologies.!
The book will introduce JSON and JSON Schema technologies, and use an incremental approach to
introducing their capabilities. The use of the technologies in different contexts will be provided, both
to illustrate the technologies, as well as to describe the value of the technologies in each usage
domain.!

Use of Schema Definitions
A schema is a vehicle for describing content to determine compliance. It is often used under the
covers as part of vetting content for entry into a program by a validation process.!
It can also be effectively used as a tool for creating correct content and accelerating the correction
process. This is especially true for content created by people or generated through interactive
systems, where dynamic processes are part of the content definition.!
Sometimes using a schema or other data definition capability is viewed as “locking down” a system,
or making it inflexible. However, with the expressiveness of JSON Schema, the purpose of the schema
is not to limit flexibility, but rather to correctly express only what is required from the data content,
create useful notices of corrections required, and leave the remaining content to the programs to
interpret.!

"1

Benefits of Using a Schema
Validation can be done with program logic, in fact, a significant portion of many programs is used to
validate inputs to be processed by the program. This includes start up command processing, reading
configuration files, reading data files, receiving messages, and accepting user input.!
In each case, the goal of the validation process is to determine whether the input content is correct
and complete before invoking further processing. The use of a schema, and a corresponding
validation function to apply the schema to the content, allows the validation function to be processed
by a purpose built function rather than bespoke coding. The schema definition, being in the domain
of the data definition, is more expressive and easier to understand than program logic.!
With simplified definition and maintenance, it is more likely that the validation can be,!

• More complete, since the time to produce schema content can be less than the time to write
program logic to perform this task.!

• Easier to read and understand. Reading program logic for validation often requires reading a mix
of stream processing, type checking, and expression checking logic. Reading a schema focuses on
the data representation, without the other processing logic mixed in.!

• Used correctly by others producing content. Often program logic is a black box, or the
documentation limited, making determining all valid inputs for particular elements, or whether
elements are required or optional, difficult to ascertain without excellent documentation being
provided. Providing a schema to other parties makes the task of creating correct content to
provide to the program much easier.!

Not all content benefits equally from using a schema. A program that only has one or two
configuration options doesn't have a significant amount of validation code, and a program that
expects free form content may not have enough definition to be very useful. Selecting the programs,
and places in the program, where schema definitions can be of benefit is a design choice.!

What A Schema Does Not Do
Using a schema replaces some program logic. Specifically that logic that is required to ensure that the
content to be processed is complete and correct. However, there are a number of areas that a schema
does not cover,!

• Elements that rely on knowledge of other systems or processing that occurs within the program.
For example, an enumeration within a schema can validate that the value provided for a customer
number has the correct number of digits and number range. However, it cannot validate that a
customer has valid credit standing at this time, which requires an additional interaction with
another system to receive this dynamic status.!

• Complex data format representations, or those that require calculation, may be beyond the scope
of the constraints defined in the specifications (such as range checks) or regular expression parser.
The schema may represent these as a string type and provide validation for what can be expressed
(e.g., length, number/letter content), while leaving it to the program to provide additional
validation logic.!

• Domain specific interpretation may require secondary logic to determine validity. For example, a
geographical position may be expressed as latitude and longitude, and the schema can verify that

"2

the coordinates provided are valid both in format and for a location on the planet. However, if the
coordinate is part of an address, the schema validation will not be able to determine whether the
coordinate is within the bounds of the city or not. A secondary validation step could provide this
additional validation step.!

These limitations express a boundary of the general purpose validation capability. However, they
invite thought on how validation can be implemented in stages, rather than a monolithic function.!

Validation as a Process
With some context now on the use of schema definitions, role of validation functions, and limitations,
validation can now be considered in the context of a process.!
The process can consist of any combination of,!

• Schema definitions and general purpose schema validation processors to provide definition and
automated processing of many aspects of data content validation.!

• Specialized secondary processors that augment the general purpose schema validation with
domain specific validation functions.!

• Bespoke program logic to handle program specific processing related to the content that has
passed through the other validation steps.!

For example, building on geographical location example in the limitations, the following logic would
fit in each of these stages.!

• The first stage determines whether a geographical location using latitude and longitude are valid
numbers, and that those numbers fall into the range of values for the planet.!

• The second stage determines whether the location is within the city boundaries for the business
receiving the message. Since city boundaries are not square, and can change over time, this stage
will interact with a system that has domain specific information and processing capability to
determine this fact and provide it to this validation processor.!

• In the third stage, the program itself can incorporate the geographical location in its user interface
to show the location the message pertains to on a map display. Given the preceding validation, it
is assured that the location will display in a visible location when just the city map is presented.!

This book deals primarily with the first stage, the definition and general purpose processing of
schema definitions. The second and third stages are implemented by the programs utilizing the result
of the first stage processing.  

"3

2. JSON

The format for JSON content is published as RFC 7159 by the IETF (Internet Engineering Task Force)
and is available at!

http://tools.ietf.org/html/rfc7159!
The specification itself can be read reasonably quickly, it contains about 8 pages of technical content.
Often, JSON related content will reference the prior version of the specification, RFC 4627. The
differences between the two are small, so information referencing RFC 4627 can continue to be
considered relevant.!

Structure of JSON Content
JSON contains object, array, and name-value pair elements. These can all be contained within one
another, with the outermost element always being either an object or an array.!
An object element is defined using enclosing braces { }.!
An array element is defined using enclosing square brackets [].!
A name-value pair is defined using the pattern “name”:value where!

• “name” is a string and includes the enclosing quotes.!
• : (colon) separates the name and value.!
• value can be a string (enclosing quotes), number, boolean (true or false), null, object (enclosing

braces { }), or array (enclosing square brackets).!
This structure provides a lot of flexibility, as objects, arrays, and name-value pairs can be defined in
many ways. The use of name-value pairs also allows for sparse definitions (no positional constraints
for placeholders), and variance in content from object to object.!

JSON Single Object
The following is JSON that contains only one object, describing the server configuration for an IP
server.!

Directory:chapter2, file: singleObject.json!
{
 "name":"Server 14",
 "address":"192.168.1.24",
 "port":80,
 "admin":[1080, 1081]
}

A JSON object is contained within enclosing braces { }. Within the braces, elements are defined with
name-value pairs. Each name-value pair is separated by a comma. A name-value pair is made up of
three parts, a name enclosed in quotation marks, a colon, and a value. The value can be,!

• A text string. Quotation marks are used to enclose the text string content.!
• A number. No quotation marks are required (e.g., the value 80 for “port” in the example above).!
• A boolean, true or false, without quotation marks.!

"4

http://tools.ietf.org/html/rfc4627

• The value null, without quotation marks.!
• An object. The value starts and ends with enclosing braces { }, and follows this definition

recursively.!
• An array. The value starts and ends with enclosing square brackets [], and contains a list of items

(e.g., the value [1080, 1081] for admin).!
A program receiving this content is presented with a single object. The following Javascript example
shows the content being read from the file and the contents being displayed to the console.!

Directory: chapter2, file: singleObject.js.!
/*
 * Read a JSON file with a single unnamed object,
 * and display the values for each element.
 */
// include the Node.js file system module
var fs = require ("fs"); !
// read the content of the file synchronously
var data = fs.readFileSync ("singleObject.json"); !
// convert the text into a JSON object
var server = JSON.parse (data); !
// display the server name
console.log ("name: " + server.name);
// display the address
console.log ("address: " + server.address);
// display the port number
console.log ("port: " + server.port);
// display the list of admin ports
for (var ctr = 0; ctr < server.admin.length; ctr ++) {
 console.log ("admin: " + server.admin[ctr]);
}

To run this program, use the following command in the directory chapter2 within the directory the
examples have been placed in (e.g., ~/bookujs/chapter2 on Linux or c:\bookujs\chapter2 on Windows).!

node singleObject.js

The following is the equivalent program written in Python.!
Directory: chapter2, file: singleObject.py!
"""
Read a JSON file with a single unnamed object,
and display the values for each element
"""
import the loads function from the json module
from json import loads !
read the content of the file synchronously
data = open ("singleObject.json", "rU").read () !
convert the text into a JSON object
server = loads (data) !
display the server name
print ("name: " + server["name"])
display the address
print ("address: " + server["address"])
display the port number
print ("port: " + str (server["port"]))

"5

display the list of admin ports
for admin in server["admin"]:
 print ("admin: " + str (admin))

To run this program, use the following command in the directory chapter2 within the directory the
examples have been placed in (e.g., ~/bookujs/chapter2 on Linux or c:\bookujs\chapter2 on Windows).!

python singleObject.py

Content typically has more than just a single type of object, if multiple types of objects are used, then
each object type can be named.!

JSON Multiple Object Types
Building on the first example, the following JSON contains an HTTP server definition (server) and a
home page definition (homepage).!

Directory chapter2, file: multipleObject.json.!
{
 "server":
 {
 "name":"Server 14",
 "address":"192.168.1.24",
 "port":80,
 "admin":[1080, 1081]
 },
 "homepage":
 {
 "url":"/",
 "page":"public/home.html"
 }
}

The differences from the first example are,!
• The enclosing braces { } now include the two objects.!
• The first object is now defined with a name-value pair, where the name is “server” and the value is

the original definition (including the enclosing braces { }).!
• A comma is added after the closing brace for the “server” object, since an additional object is being

added following it.!
• The new object, homepage, is added using a key-value pair consisting of the homepage name, and

the homepage element definitions within enclosing braces { }.!
The software program loading this content will access the two objects using the server and homepage
names to reference each individual object. !
For instance, in a simple Javascript program reading this content from a file using Node.js follows.!

Directory chapter2, file: multipleObject.js!
/*
 * Read a JSON file with multiple object types, and
 * display a value from each object type.
 */
var fs = require ("fs"); !
// read the file synchronously, convert to a JSON object
var content = fs.readFileSync ("multipleObject.json");
var configuration = JSON.parse (content); !
// display the port in the server definition

"6

console.log ("port: " + configuration.server.port);
// display the url in the homepage definition
console.log ("url: " + configuration.homepage.url);

To run this program, use the following command in the chapter2 directory.!
node multipleObject.js

The following is the equivalent program written in Python.!
Directory: chapter2, file: multipleObject.py!
"""
Read a JSON file with multiple object types, and
display a value from each object type.
"""
from json import loads !
read the file and convert to a JSON object
data = open ("multipleObject.json", "rU").read ()
configuration = json.loads (data) !
display the port in the server definition
print ("port: " + str (configuration["server"]["port"]))
display the url in the homepage definition
print ("url: " + configuration[“homepage"]["url"])

To run this program, use the following command in the chapter2 directory.!
python multipleObject.py

For many schema definitions, the content will be a single instance of a group of objects. However, for
those definitions that can have multiple instances of a single type, an array definition can be used.!

JSON Array
Many uses of JSON will require specifying multiple instances of an element. For example, multiple
HTTP servers may be defined in a configuration. Building on the first example, an array of HTTP
server definitions is shown below.!

Directory chapter2, file: array.json.!
[
 {
 "name":"Server 14",
 "address":"192.168.1.24",
 "port":80,
 "admin":[1080, 1081]
 },
 {
 "name":"Server 15",
 "address":"192.168.1.31",
 "port":80,
 "admin":[1080, 1081]
 }
]

The differences from the first example are,!
• Enclosing square brackets [] surround the elements in the array (first and last lines).!
• A comma is added after the first element, as a separator before the next element is added.!
• A second object has been added to the set, with its own content.!

When this content is read by a program, the content will be parsed as an array with two elements. An
example displaying of an object from each array element is shown next.!
"7

Directory: chapter2, file: array.js!
/*
 * Read a JSON file with multiple array elements, and display a value
 * from each element.
 */
var fs = require ("fs"); !
// read the file synchronously and convert to a JSON object
var content = fs.readFileSync ("array.json");
var servers = JSON.parse (content); !
// display the first server address
console.log ("server: " + servers[0].name + " " + servers[0].address);
// display the second server address
console.log ("server: " + servers[1].name + " " + servers[1].address);

To run this program, use the following command in the chapter2 directory.!
node array.js

The following is the equivalent program written in Python.!
Directory: chapter2, file: array.py!
"""
Read a JSON file with multiple array elements, and display a value
from each element.
"""
from json import loads !
read the file and convert to a JSON object
data = open ("array.json", "rU").read ()
servers = loads (data) !
display the first server address
print ("server: " + servers[0]["name"] + " " + servers[0]["address"])
display the second server address
print ("server: " + servers[1]["name"] + " " + servers[1]["address"])

To run this program, use the following command in the chapter2 directory.!
python array.py

JSON Named Array
The previous examples used an unnamed array. Like objects, an array can be be identified with a
name as well. This can be useful if the structure of the content may be extended in the future to
support additional array or object types, allowing the original content to be used consistently before
and after the changes.!

Directory: chapter2, file: namedArray.json.!
{
 "servers":
 [
 {
 "name":"Server 14",
 "address":"192.168.1.24",
 "port":80,
 "admin":[1080, 1081]
 },
 {
 "name":"Server 15",
 "address":"192.168.1.31",
 "port":80,

"8

 "admin":[1080, 1081]
 }
]
}

The differences in the JSON content are,!
• The array is now enclosed in an object, so the root element is enclosed in braces { }.!
• The “servers” name-value pair name is added before the opening square bracket []!

When accessing the named array in a program, the array name will be added to the element. The
following shows the updated code from the array.js example.!

Directory: chapter2, file: namedArray.js!
/*
 * Read a JSON file with multiple named array elements,
 * and display a value from each element.
 */
var fs = require ("fs"); !
// read the file synchronously, convert to a JSON object
var content = fs.readFileSync ("namedArray.json");
var data = JSON.parse (content); !
// display the first server address
console.log ("server");
console.log (" name: " + data.servers[0].name);
console.log (" address: " + data.servers[0].address);
// display the second server address
console.log ("\nserver");
console.log (" name: " + data.servers[1].name);
console.log (" address: " + data.servers[1].address);

In the console.log calls at the end of the code, the element references now include the array name from
the JSON content. Where the first element in array.js was servers[0].name, since the array was
unnamed, now becomes servers.servers[0].name, with the named array.!
To run this program, use the following command in the chapter2 directory.!

node namedArray.js

The following is the equivalent program written in Python.!
Directory: chapter2, file: namedArray.py!
"""
Read a JSON file with multiple named array elements,
and display a value from each element.
"""
from json import loads !
read the file and convert to a JSON object
content = open ("namedArray.json", "rU").read ()
data = loads (content) !
display the first server address
print ("server")
print (" name: " + data["servers"][0]["name"])
print (" address: " + data["servers"][0]["address"])
display the second server address
print ("\nserver")
print (" name: " + data["servers"][0]["name"])
print (" address: " + data["servers"][0]["address"])

To run this program, use the following command in the chapter2 directory.!

"9

python namedArray.py

The next topic describes this in a broader context, combining multiple object types and arrays.!

JSON Multiple Object Types and Arrays
Bringing together the previous two concepts, this file example is typical of JSON content. Building on
the prior examples, the following schema includes a HTTP server definition with a set of web pages it
hosts.!

Directory: chapter2, file: mixed.json!
{
 "server":
 {
 "name":"Server 14",
 "address":"192.168.1.24",
 "port":80,
 "admin":[1080, 1081]
 },
 "pages":
 [
 {
 "url":"/",
 "page":"public/home.html"
 },
 {
 "url":"/about",
 "page":"public/company/about.html"
 },
 {
 "url":"/careers",
 "page":"public/company/careers.html"
 }
]
}

In the JSON content the “server” element is a single object, while the “pages” element is an array. The
use of an object definition or an array definition for each data type is an independent choice, there can
be any number of either included.!
For a program using this content, a simple program accessing this data is shown below.!

Directory chapter2, file: mixed.js!
/*
 * Read a JSON file with multiple object types and an array.
 * Display a value from the object type and each array.
 */
var fs = require ("fs"); !
// read the file synchronously and convert to a JSON object
var content = fs.readFileSync ("mixed.json");
var configuration = JSON.parse (content); !
// display the port in the server definition
console.log ("port: " + configuration.server.port);
// display the url of the each cataloged page
for (var ctr = 0; ctr < configuration.pages.length; ctr ++) {
 console.log ("url: " + configuration.pages[ctr].url);
}

To run this program, use the following command in the chapter2 directory.!
node mixed.js

"10

The following is the equivalent program written in Python.!
Directory: chapter2, file: mixed.py!
"""
Read a JSON file with multiple object types and an array.
Display a value from the object type and each array.
"""
from json import loads !
read the file and convert to a JSON object
data = open ("mixed.json", "rU").read ()
configuration = loads (data) !
display the port in the server definition
print ("port: " + str (configuration["server"]["port"]))
display the url of the each cataloged page
for page in configuration["pages"]:
 print ("url: " + page["url"])

To run this program, use the following command in the chapter2 directory.!
python mixed.py

Syntax Checking JSON Content
JSON content is plain text, and its syntax is well defined. This enables validation of JSON content to
be straightforward, and for any syntax errors to be readily identified. There are a number of syntax
checking tools available for JSON, including automatic parsing in text editors and integrated
development tools, and in browser based tools.!
As a “hello world” type of program for JSON, a syntax checking tool is presented. These introduce the
JSON parser usage, and the basic structure for the contents of projects used throughout the book.!

Syntax Check Tool – Javascript / Node.js Version

A very simple tool follows that displays a success message (“File contains valid JSON content.”) if the
syntax is valid, and a failure message if it does not (e.g., “Invalid JSON content: Unexpected string”).!
The chapter2/nodejs/jsonsyntax directory contains the main program for a syntax check command line
tool written in Javascript that runs on the Node.js runtime. The full program content, including code,
packaging and tests is in the ujs-jsonsyntax-node repository. The source code for the syntax checking
function itself is shown next.!

Directory: chapter2/nodejs/jsonsyntax, file: jsonsyntax.js!
The leading section includes the file system module from Node.js (fs).!

 1 /**
 2 * Read a file and determine if content is valid JSON syntax.
 3 *
 4 * Usage: jsonsyntax file
 5 * file JSON file to check syntax of
 6 *
 7 * Exit code
 8 * exit code: 0 for success, 1 for failure.
 9 */
10
11 // file system module
12 var fs = require ("fs");

"11

The error, CheckSyntaxError, is used in exceptions. The passed parameters are stored for use by the
exception handling code in the calling function.!

14 /**
15 * Error definition thrown when an error occurs.
16 * - error code 1: Invalid name
17 * - error code 2: File does not exist
18 * - error code 3: Error reading file
19 * - error code 4: JSON syntax error
20 *
21 * @param {integer} code Error number
22 * @param {string} message Text message, suitable for display
23 */
24 exports.CheckSyntaxError = CheckSyntaxError;
25 function CheckSyntaxError (code, message)
26 {
27 this.name = "CheckSyntaxError";
28 this.code = code;
29 this.message = message;
30 }

The checkSyntax function validates the input parameter, reads the specified file, and then parses the
data from the file using the JSON parser. All errors are handled using exceptions, so if the function
reaches its end, then the syntax check is successful.!

32 /**
33 * Check syntax of file passed in command line argument.
34 *
35 * @param {string} file File to check
36 * @throws CheckSyntaxError
37 */
38 exports.checkSyntax = checkSyntax;
39 function checkSyntax (file) {
40 "use strict";
41
42 // verify file provided
43 if ((file === null) || (file === undefined)) {
44 throw new CheckSyntaxError (1, "Invalid name");
45 }
46
47 // verify file exists
48 if (fs.existsSync (file) === false) {
49 throw new CheckSyntaxError (2, "File not found");
50 }
51
52 // read specified file
53 var data = null;
54 try {
55 data = fs.readFileSync (file);
56 } catch (e) {
57 throw new CheckSyntaxError (3, "Error reading file: " + e.message);
58 }
59
60 // parse the data as JSON
61 try {
62 JSON.parse (data);
63 } catch (e) {
64 throw new CheckSyntaxError (4, e.message);
65 }
66 }

The last section contains the main function, executed if the program is called from the command line
or in a script. It displays a usage message if the command does not include exactly one argument

"12

(process.argv includes 2 static arguments, so one program argument brings its length to 3). If the
syntax check is successful, it displays a valid message and the program ends with exit code 0 (zero). If
the syntax check fails, the reason is displayed and the program ends with exit code 1 (one).!

68 /**
69 * Main - parse file name from command and call syntax check.
70 */
71 function main () {
72 "use strict";
73 // if wrong number of arguments, print usage message and exit
74 if (process.argv.length !== 3) {
75 console.log ("Usage: jsonsyntax file");
76 console.log (" file JSON file to check syntax of");
77 process.exit (1);
78 }
79
80 // check syntax, displaying result message. Exit with success/fail code.
81 try
82 {
83 var file = process.argv[2];
84 checkSyntax (file);
85 console.log ("File contains valid JSON content.");
86 process.exit (0);
87 } catch (e) {
88 console.log ("Error: " + e.message);
89 process.exit (1);
90 }
91 }
92
93 // if module invoked directly, call main
94 if (require.main === module) {
95 main ();
96 }

The parser from the current V8 runtime produces terse error messages that do not contain context
information (such as line, position, or element the error occurred at). Thus, this tool is useful for
pass / fail checking, but other tools will be more useful for editing activities.!
Since a pass/fail exit code is returned, the program can be used in scripts. For example, a script can
automate scanning all the JSON files in a directory to verify they all contain valid syntax.!
To see a successful result, use the following command in the chapter2 directory.!

jsonsyntax array.json

To see an unsuccessful result, the invalid.json file is provided. It omits a comma after the “address”
field in the first element, and uses an equals sign instead of a colon in the “address” field in the second
element. Use the following command in the chapter2 directory.!

jsonsyntax invalid.json

If you have both the Javascript / Node.js and Python versions of the tool installed, you can use
jsonsyntaxn instead of jsonsyntax as the command to run the Javascript / Node.js version explicitly.!

Syntax Check Tool – Python Version

The syntax checking program in Python provides the same capability as the Javascript version, but the
Python parser also provides location information for the error (e.g., “Expecting ',' delimiter: line 5
column 5 (char 67)”).!
The program logic is very similar to the Javascript / Node.js version, except the definition of the error
used in exception handling in Python is a class derived from the built-in Exception class.!
"13

Directory: chapter2/python/jsonsyntax, file: jsonsyntax.py!
The leading section includes the Python modules used (sys, os.path and json).!

 1 """
 2 Read a file and determine if content is valid JSON syntax.
 3
 4 Usage: jsonsyntax file
 5 file JSON file to check syntax of
 6
 7 Exit code
 8 exit code: 0 for success, 1 for failure.
 9 """
10
11 # import modules
12 import sys
13 import os.path
14 import json

The class CheckSyntaxError is for exceptions. The passed parameters are stored for use by the
exception handling code in the calling function.!

16 class CheckSyntaxError (Exception):
17 """
18 Error definition thrown when an error occurs.
19 - error code 1: Invalid name
20 - error code 2: File does not exist
21 - error code 3: Error reading file
22 - error code 4: JSON syntax error
23
24 Args:
25 code: Error number
26 message: Text message, suitable for display
27 """
28 def __init__ (self, code, message):
29 self.code = code;
30 self.message = message;
31
32 def checkSyntax (file):
33 """
34 Check syntax of file passed in command line argument.
35
36 Args:

The checkSyntax function validates the input parameter, reads the specified file, and then parses the
data from the file using the JSON parser. All errors are handled using exceptions, so if the function
reaches its end, then the syntax check is successful.!

38
39 Raises:
40 CheckSyntaxError
41 """
42 # verify file provided
43 if (file == None):
44 raise CheckSyntaxError (1, "Invalid name")
45
46 # verify file exists
47 if (os.path.isfile (file) == False):
48 raise CheckSyntaxError (2, "File not found")
49
50 # read specified file
51 try:
52 data = open (file).read ()
53 except IOError as e:
54 raise CheckSyntaxError (3, "Error reading file: " + e.strerror)

"14

55
56 # parse the data as JSON
57 try:
58 json.loads (data)
59 except ValueError as e:
60 raise CheckSyntaxError (4, str (e.args));
61
62 def main ():
63 """
64 Main - parse file name from command and call syntax check.

The main function is executed if the program is called from the command line or in a script. It
displays a usage message if the command does not include exactly one argument (sys.argv includes 1
static argument, so one program argument brings its length to 2). If the syntax check is successful, it
displays a valid message and the program ends with exit code 0 (zero). If the syntax check fails, the
reason is displayed and the program ends with exit code 1 (one).!

66 # if wrong number of arguments, print usage message and exit
67 if (len (sys.argv) != 2):
68 print ("Usage: jsonsyntax fileName")
69 print (" fileName JSON file to check syntax of")
70 sys.exit (1)
71
72 # check syntax, displaying result message. Exit with success/fail code.
73 try:
74 # assign command line argument to file name
75 file = sys.argv[1]
76 checkSyntax (file);
77 print ("File contains valid JSON content.")
78 sys.exit (0);
79 except CheckSyntaxError as e:
80 print ("Error: " + e.message);
81 sys.exit (1);
82
83 if (__name__ == "__main__"):
84 main ()

To see a successful syntax check, use the following command in the chapter 2 directory.!
jsonsyntax array.json

To see an unsuccessful result, the invalid.json file is provided. It omits a comma after the “address”
field in the first element, and uses an equals sign instead of a colon in the “address” field in the second
element. Use the following command in the chapter2 directory.!

jsonsyntax invalid.json

If you have both the Javascript / Node.js and Python versions of the tool installed, you can use
jsonsyntaxp instead of jsonsyntax as the command to run the Python version explicitly.  

"15

3. JSON Schema

JSON Schema provides a content definition language for JSON file content. A JSON Schema definition
is used to validate the structure and many aspects of the content of a JSON file. !
A schema defined using JSON Schema uses the JSON syntax, making the previous chapter also the
beginning of the introduction to creating JSON Schema definitions.!
The JSON Schema specifications have been made available through the IETF (Internet Engineering Task
Force) as Internet Drafts. The latest version of the core specification draft at the time of this writing,
and which is used for the schema files included, is draft 4. There are three specifications related to
JSON Schema,!
The core specification draft!

http://tools.ietf.org/html/draft-zyp-json-schema-04!
The validation specification draft!

http://tools.ietf.org/html/draft-fge-json-schema-validation-00!
The hypertext specification draft!

http://tools.ietf.org/html/draft-luff-json-hyper-schema-00!
As Internet Drafts, they are not final specifications and when reading the specifications you may note
that the expiry dates for some of the specifications have passed. This is part of the IETF process for
publishing work in progress. While the work is continuing, the published materials are useful and
there are tools available that conform to the continuing work that are available and of practical use.!
When selecting tools and programs that implement JSON Schema, it is important to verify that the
versions (drafts) the tool/program specifies compliance to is compatible with the version (draft) that
your content has been created to.!

Constructing a Schema
Schema creation can be a top-down or bottom-up activity. The top-down approach defines the
schema first, and may precede the existence of actual data. The bottom-up approach uses actual data
as the guide to create the schema. Especially for configuration files and simple datasets, the bottom-
up approach is often more practical,!

• These definitions tend to evolve as a project is defined or as the code is being written, rather than
fixed in place ahead of time.!

• Data content, such as enumerations of valid values, tend to be more common in message formats,
configuration files, and specialized small datasets, than in general purpose databases.!

The bottom-up approach also encourages active maintenance of the schema to reflect the needs of the
content being managed, rather than treating the schema as a static resource.!
To start working with JSON Schema, a simple empty schema will be presented first, followed by
incrementally building more complex schemas.!

"16

http://tools.ietf.org/html/draft-zyp-json-schema-04
http://tools.ietf.org/html/draft-fge-json-schema-validation-00
http://tools.ietf.org/html/draft-luff-json-hyper-schema-00

Structure of a JSON Schema Definition
JSON Schema definitions, as JSON content, contain object, array, and name-value pair elements.
Name-value pairs are defined for a the constructs JSON Schema defines, to provide schema processing
elements for validation, and for describing the JSON content to be validated.!
Schema processing elements include,!

• “$schema” to specify the version of JSON Schema to process with.!
• “title” and “description” to provide information about the schema to the reader.!
• “required”, an array of elements, indicating which elements must be present.!
• “additionalProperties”, often a boolean, to indicate whether existence of a property that is not

specified is allowed (true) or not allowed (false). Alternatively, this can be a schema to constrain
what additional properties are acceptable.!

• JSON content definition elements are,!
• When defining a JSON object, JSON Schema uses the name-value pair “type”:”object”. Elements

contained within an object are defined under the name-value pair “properties”.!
• When defining a JSON array, JSON Schema uses the name-value pair “type”:”array”. Elements

contained within an object are defined under the name-value pair “items”.!
• When defining a JSON name-value pair, JSON Schema uses a name-value pair with the “name” of

the element to match with the JSON content “name”, followed by an object that contains the
constraints to be applied to the JSON element.!

The next sections walk through the process of utilizing these schema elements.!

Style
JSON Schema syntax does not impose positional requirements on elements. The position of braces {},
square brackets [], etc is up to the creator of the content.!
The examples follow a style that favors readability in a page format, which includes keeping related
content on the same line when possible. The guidelines for the style follow.!

• Braces for objects and properties will occupy their own line, and left align with the object.!
• Square brackets for arrays are inline.!
• Constraints for a property or array will be listed on the same line.!
• Indentation of 2 spaces for each level of indentation.!
• When a property definition will not fit well on a single line, it will use the object definition style

(braces on a new line, each constraint on a new line with an indent of two spaces).!
There are many variations on style possible. Should you prefer a different style, development tools
and “pretty parsers” can often reformat styles to suit.!

Values for the “$schema” Element
The“$schema” element specifies the JSON Schema version that this content complies with. This allows
the process reading/receiving the schema to know what content to expect per the version of the
specification referenced.!

"17

The following shows a declaration without specifying a specific version. When used, the latest
version of the specification known to the processing program will be used.!

{
 "$schema":"http://json-schema.org/schema#"
}

If the schema uses features of a specific version, the version (draft presently) required can be specified
in the URI. The following shows a declaration that specifies draft-04 as the JSON Schema specification
version to apply.!

{
 "$schema":"http://json-schema.org/draft-04/schema#"
}

The list of valid values for this URI are specified in the core specification. For draft 4 of the
specification it is in section 6 titled The “$schema” keyword.!
The examples provided in this book will use the draft-04 URI, since the features introduced in draft-04
of the specification are used. Since the specification is expected to have additional versions, specifying
the specific draft rather than using the latest version URI is recommended to ensure proper
processing of schemas.!

JSON Schema Empty Structure
To start, an empty schema will be defined. This is a very simple template for any JSON Schema
definition.!

Directory: chapter3, file: empty_schema.json.!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"schema name here",
 "description":"longer description here"
}

The first thing to note is that this is a valid JSON file. The enclosing braces { } indicate that a JSON
object is being defined.!
The first key-value pair, “$schema”, specifies the JSON Schema version that this content complies with.
Per the introduction of the “$schema” element, the draft-04 URI is used.!
The second and third key-value pairs are “title” and “description”. These are optional, but for the top
level item it is recommended to provide context for the reader that may be more useful than the file
name, URL, or other container name, for the schema.!
The content specific to each schema definition will follow these leading elements.!

JSON Schema Examples and Validation Tools
The remainder of this chapter provides hands on examples for different uses of JSON Schema and
each of its features. The examples are incremental, starting with examples that show how different
object and array constructs are defined. Structural constraints and content constraints follow, with use
of references at the end.!
For each example there are valid and invalid JSON files provided. With many validation use cases,
understanding the invalid cases is often a better mechanism for learning. This is especially when the

"18

http://json-schema.org/schema
http://json-schema.org/draft-04/schema

invalid case enables a better understanding of how to utilize JSON Schema features to construct more
precise schema definitions.!
To perform the validation processing, a schema processor is used to determine whether the JSON
content conforms to a schema definition. Three schema processors are provided, a command line tool
written in Javascript using Node.js, a command line tool written in Python, and a web browser tool
built using HTML, CSS and Javascript.!

• The command line and web browser tools using Javascript use the schema processor in the Tiny
Validator for JSON Schema 4 library.!

• The Python tool uses the schema processor in the jsonschema library.!
The command line validation tool implementations are covered in chapter 8.!
For each example, instructions for using the browser and command line options for validation
processing. Valid and invalid cases are provided, along with an explanation for the results seen by
each invalid case.!

Using the Command Line Validation Tools

The command line validation tools accept the following parameters,!
• Required. Name of the file containing the JSON content to be validated.!
• Required. Name of the file containing the JSON Schema to be validated against.!
• Optional: Name of individual files containing JSON Schema definitions that are accessed through

references ($ref). Multiple files can be specified.!
• Optional: Name of the file containing the JSDB contents. JSDB is a file containing one or more

JSON Schema definitions, accessed through a jsdb URI. This is used in examples for custom
resource managers.!

The installation process, covered in Appendix A, details the steps for installing the command line
tools. After installation, the tools will be accessible from any directory on the computer. Each example
includes the specific command for using the validation tool with the example.!

Using the Online Validation Tool

An online validation tool is provided at,!
http://jsonvalidate.com!

It can be accessed using any current web browser. The following graphic is the JSON Validate web
page as it is displayed when first loaded.!

"19

http://jsonvalidate.com/

The JSON Schema, JSON Content, and References fields can be typed into directly, or content can be
placed into the fields using cut and paste. As a simple tutorial, type or paste the following content into
the JSON Schema field.!

{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Test",
 "description":"Test example", !
 "type":"object",
 "properties":
 {
 "name":{"type":"string"}
 }
}

Then type or paste the following content into the JSON Content field.!
{ "name":"John Doe" }

Press the Validate button to run the validation tool. The result will be display in the Results box at the
bottom of the window. The result should be Valid. If text other than Valid is displayed, then check the
schema and content text to make sure they match the example, and press Validate again after making
corrections.!
The Reset All button clears all the text areas, placing the boilerplate in the schema field.!
In addition to using the tool for free form content, an import function is provided that provides easy
access to all the book examples. To select an example from the book, click Import on the navigation
bar. On the Import dialog, select the desired example and press the Load button. The schema, content
and references for the example will be populated. You can experiment with the examples and use the
Validate button at any time to run the validation processor.!

"20

Note: no changes are saved. To save any changes made, cut and paste the updated content to an editor
(e.g., Notepad on Windows or gedit on Linux or TextEdit on OS X) and save the content using the editor
save function.!

JSON Schema for a Simple Object (3A)
The first example consists of a single object containing two properties.!

Directory: chapter3, file: simpleObjectValid.json!
{
 "address":"192.168.1.60",
 "port":80
}

The object itself does not express requirements or constraints on the content, so as part of defining the
schema a set of decisions will be made that will be expressed in the schema. The basic schema
definition starts by identifying the structure of the data.!

Directory: chapter3, file:simpleObject_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Server",
 "description":"Simple IP server definition", !
 "type":"object",
 "properties":
 {
 "address":{"type":"string"},
 "port":{"type":"integer"}
 }
}

Taking the original data content, the following process is applied in creating the initial schema.!
• The original data content starts with an object definition (enclosing braces { }). Therefore, in the

schema, the first element following “title” is the schema definition for an object (“type”:”object”).!
• The next content is the fields contained within the object. In JSON Schema these are defined as a

set of properties. In the JSON Schema this is represented with the key-value pair “properties” with
an element for each field that can be part of the data.!

• For each property, a name-value pair is defined. The name portion is the name that is present in
the data file (“address” and “port” in this example). The value portion is an object (enclosing braces
{ }) and always contains a key-value pair for the data type (“type”=”...”). “type” is one of any, array,
boolean, integer, number, null, object, or string.!

This schema, when used for validating JSON content, will indicate as valid any JSON content that,!
• Contains an object (enclosing braces { })!
• If there is a key-value pair with the “address”, that the value associated with it is of type string.!
• If there is a key-value pair with the name “port”, that the value associated with it is of type integer.!

Looking at the list, you may have been expecting more definitive statements, such as verifying the
“address” and “port” are present, since the schema definition seemed pretty prescriptive.!
However, JSON Schema is permissive, it only validates against constraints that are explicitly defined.
If a constraint is not specified for an element, then it is considered valid.!

"21

• If an element is not declared as “required”, then its constraints will only apply when the element is
present in the content being validated. Otherwise, not being present is considered valid.!

• If an unspecified property is present in the data content, assuming it was valid JSON syntax, the
schema would accept it as valid if not explicitly constrained not to allow unspecified properties.!

Validation (No Errors)

Running the validation against valid content is done with the provided validation tool using the
following command in the chapter3 directory.!

validate simpleObjectValid.json simpleObject_schema.json

Alternatively, the HTML tool can be used, loading the Basic: Simple Object (Valid) example.!
The result of the validation is the valid message.!

Validation (Invalid Structural Element)

The following JSON content places the object within an array element.!
Directory: chapter3, file: simpleObjectInvalid1.json!
[
 {
 "address":"192.168.1.60",
 "port":80
 }
]

To validate, use the Basic: Simple Object (Invalid 1) HTML example or use the command,!
validate simpleObjectInvalid1.json simpleObject_schema.json

The schema specifies an object as the top level element, making the content invalid. The message
conveys the expectation of an object element, but an array element being encountered instead.!

Validation (Invalid Data Type)

Content with an incorrect data type will also be recognized as invalid.!
Directory: chapter3, file: simpleObjectInvalid2.json!
{
 "address":true,
 "port":80
}

To validate, use the Basic: Simple Object (Invalid 2) example or use the command,!
validate simpleObjectInvalid2.json simpleObject_schema.json

The boolean value true is not acceptable for the “address” element, which the schema specifies as string.
The error message will indicate the type of the value encountered does not match the type of the
value expected.!

Validation (Invalid Numeric Value)

Data types can have constraints that are part of their type definition. The following is an example that
does not conform to a data type constraint.!

Directory: chapter3, file: simpleObjectInvalid3.json!
{
 "address":"192.168.1.60",
 "port":80.1
}

"22

To validate, use the Basic: Simple Object (Invalid 3) example or use the command,!
validate simpleObjectInvalid3.json simpleObject_schema.json

In the schema, the port element is defined as an integer. In the content presented for validation, the
port element is defined with a floating point number. The invalid message will convey the mismatch
in numeric representation.!

Content Constraints for the Simple Object (3B)
To make the simple object schema definition more prescriptive, some constraints will be added. The
content will require the properties defined to be present, and to not allow any properties other than
those specified.!

Directory: chapter3, file: simpleObjectReqd_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Server",
 "description":"IP server with required properties", !
 "type":"object",
 "properties":
 {
 "address":{"type":"string"},
 "port":{"type":"integer"}
 },
 "additionalProperties":false,
 "required":["address", "port"]
}

At the same level as the “properties”, two additional constraints are defined.!
• “additionalProperties” can be either a boolean value or a schema.!

• A boolean value of true will allow any additional properties to be included in the JSON content,
and considered valid.!

• A boolean value of false will disallow any additional properties. If a property is defined that
does not match a specified property, then the validation will fail.!

• A schema value will validate any properties not explicitly defined against this schema,
determining whether the additional property is accepted or not.!

• “required” is a key-value pair that is represented by an array containing a list of the properties that
need to be present for the content to be considered valid.!

With the addition of these constraints, the validation will only pass for JSON content that matches the
structure specified in the schema with no extra content.!

Validation (No Errors)

To validate against the original JSON content with the additional constraints, use the Basic: Simple
Object Required (Valid) example or use the command.!

validate simpleObjectValid.json simpleObjectReqd_schema.json

The result of the validation is the valid message.!

Validation (Missing Property)

The following JSON content does not specify the address property.!

"23

Directory: chapter3, file: simpleObjectReqdInvalid1.json!
{
 "port":80
}

To validate, use the Basic: Simple Object Required (Invalid 1) example or use the command,!
validate simpleObjectReqdInvalid1.json simpleObjectReqd_schema.json

The missing property will be indicated in the error message displayed by the validation program.!

Validation (Extraneous Property)

The following JSON content includes an extra property, “name”, that is not specified in the schema.!
Directory: chapter3, file: simpleObjectReqdInvalid2.json!
{
 "name":"Server 14",
 "address":"192.168.1.100",
 "port":80
}

To validate, use the Basic: Simple Object Required (Invalid 2) example or use the command,!
validate simpleObjectReqdInvalid2.json simpleObjectReqd_schema.json

The extraneous property will be indicated in the error message displayed by the validation program.!

JSON Schema for an Array (3C)
Using very simple JSON content for an array, a JSON Schema will be defined.!

Directory: chapter3, file: simpleArrayValid.json!
["Red", "Yellow", "Green"]

The schema will constrain the items in the array to be of type string only by including the
additionalItems constraint set to false.!

Directory: chapter3, file: simpleArray_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Traffic signals",
 "description":"List of traffic signal colors", !
 "type":"array",
 "items":
 {
 "type":"string"
 },
 "additionalItems":false
}

Validation (No Errors)

To validate, use the Basic: Simple Array (Valid) example or use the command.!
validate simpleArrayValid.json simpleArray_schema.json

The result of the validation is the valid message.!

Validation (Extraneous Item)

"24

The schema disallows additional items (“additionalItems”:false), which means that all items in the
content must conform to the schema definitions under “items”. Adding an array item that is does not
conform will result in a validation error.!

Directory: chapter3, file: simpleArrayInvalid.json!
["Red", "Yellow", "Green", true]

To validate, use the Basic: Simple Array (Invalid) example or use the command,!
validate simpleArrayInvalid.json simpleArray_schema.json

The boolean item will be indicated as invalid.!

JSON Schema for a Named Object (3D)
From the preceding object and array examples, the definitions for the structural elements were shown
for a single hierarchy level in the JSON content. As hierarchy levels are added, these schema reflects
the structural hierarchy of the content. The following example shows a named object, introducing a
hierarchy to the simple object example content.!

Directory: chapter3, file: simpleNamedObjectValid.json!
{
 "server":
 {
 "address":"192.168.1.60",
 "port":80
 }
}

The schema reflects the addition of the hierarchical element.!
Directory: chapter3, file: simpleNamedObject_schema.json!
 1 {
 2 "$schema":"http://json-schema.org/draft-04/schema#",
 3 "title":"Server",
 4 "description":"Server address and port number",
 5
 6 "type":"object",
 7 "properties":
 8 {
 9 "server":
10 {
11 "type":"object",
12 "properties":
13 {
14 "address":{ "type":"string" },
15 "port":{ "type":"integer" }
16 },
17 "additionalProperties":false,
18 "required":["address", "port"]
19 }
20 }
21 }

When comparing simpleObjectReqd_schema.json to this schema, we see,!
• The definition of the innermost “type”:”object” (lines 11-18) is the same. The only difference to this

part of the definition is the hierarchical position it is defined within.!
• At the top level, the first element “type”:”object” (line 6) still represents the opening brace in the

content.!

"25

• An additional hierarchy level is added at lines 7-9, where the “server” element is added.!
This example establishes the structural model that will be applied. While the complexity of the
content and hierarchical depth will vary, the structure of the schema follows this pattern.!

Validation (No Errors)

To validate, use the Basic: Simple Named Object (Valid) example, or use the command.!
validate simpleNamedObjectValid.json simpleNamedObject_schema.json

The result of the validation is the valid message.!

JSON Schema for Mixed Objects and Arrays (3E)
The next configuration file contains a server definition (single object) and web page definition (array).
The array contains a set of objects, but it is not required that the objects be named.!

Directory: chapter3, file: simpleMixedValid.json!
{
 "server":
 {
 "address":"192.168.1.60",
 "port":80
 },
 "pages":
 [
 {
 "url":"/",
 "page":"public/home.html"
 },
 {
 "url":"/about",
 "page":"public/company/about.html"
 },
 {
 "url":"/careers",
 "page":"public/company/careers.html"
 }
]
}

The schema adds an array type to the hierarchy, and a second named element under the top level.
When the JSON content is being evaluated, the names are used to select the correct schema elements
to apply to the content.!

Directory: chapter3, file: simpleMixed_schema.json!
 1 {
 2 "$schema":"http://json-schema.org/draft-04/schema#",
 3 "title":"HTTP Server",
 4 "description":"HTTP server definition and URL list",
 5
 6 "type":"object",
 7 "properties":
 8 {
 9 "server":
10 {
11 "type":"object",
12 "properties":
13 {
14 "address":{"type":"string"},
15 "port":{"type":"integer"}

"26

16 },
17 "additionalProperties":false,
18 "required":["address", "port"]
19 },
20 "pages":
21 {
22 "type":"array",
23 "items":
24 {
25 "type":"object",
26 "properties":
27 {
28 "url":{"type":"string"},
29 "page":{"type":"string"}
30 },
31 "additionalProperties":false,
32 "required":["url", "page"]
33 }
34 }
35 }
36 }

The definitions of the properties that make up the individual elements (lines 14-15 and 28-29), along
with the element constraints (lines 17-18 and 31-32) are packaged within the hierarchical elements
(lines 9-19 and 20-34). The styles and characteristics are the same for both object and array types.!

Validation (No Errors)

To validate, use Basic: Simple Mixed (Valid) example, or the following command in the chapter3
directory.!

validate simpleMixedValid.json simpleMixed_schema.json

The result of the validation is the valid message.!
This example completes the basic definition and structural definition aspects of JSON Schema. The
next topics cover capabilities that allow crafting schema definitions that can reflect the complexity
and nuances of the data being modeled for.!

Patterns for Properties (3F)
The preceding examples have all used plain text for the property elements. When the validation of
JSON content is performed, the matching of JSON content to schema elements will correlate the exact
text for each.!
However, JSON Schema also supports patternProperties, which allow the definition of a property to be
a regular expression, rather than plain text. The validation process will then match the text definition
from the JSON content using pattern matching against the patterns and plain text properties
presented in the schema definition. For example, the following schema definition for a note uses a
patternProperties element for comments.!

Directory: chapter3, file: note_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Note",
 "description":"Note with optional comments", !
 "type":"object",
 "properties":

"27

 {
 "author":{"type":"string"},
 "title":{"type":"string"},
 "content":{"type":"string"}
 },
 "patternProperties":
 {
 "^comment[1-9]$":{"type":"string"}
 },
 "additionalProperties":false,
 "required":["author", "title", "content"]
}

The patternProperties element contains the comments element defined as a regular expression. In this
case, the allowed names for the elements in the JSON content are comment1, comment2, comment3,
comment4, comment5, comment6, comment7, comment8, and comment9. The following example JSON content
shows an example note.!

Directory: chapter3, file: noteValid.json!
{
 "author":"Jane",
 "title":"Party plan",
 "content":"Surprise party for Jim. Attendees: Sally, Bob so far.",
 "comment1":"Jill checking with Larry",
 "comment3":"Mary has to check schedule, will text later"
}

The comment properties can be any combination matching the pattern. In this example, two comment
properties are defined, but they are not sequential.!
Regular expressions are very flexible, and care should be taken to ensure patterns are scoped
properly. The use of carat (^) and dollar sign ($) to indicate explicit start and end can ensure
appropriate length of content for predictable parsing by the receiving program. For instance, the
following shows the patternProperties definition without the explicit markers.!

 "patternProperties":
 {
 "comment[1-9]":{ "type":"string" }
 },

This would allow “comment1abc”, “mycomment1”, “commentcomment2”, et cetera to be used as
property names. For the schema definition in this example, where the comment properties are not
simply free form content, this arbitrary naming of properties would not be appropriate.!

Validation (No Errors)

To validate, use the Pattern: Note (Valid) example, or use the following command in the chapter3
directory.!

validate noteValid.json note_schema.json

The result of the validation is the valid message.!

Validation (Unmatched Pattern)

Showing a property that does not match the pattern, a property with the name comment10 is used,
which does not correspond with the defined pattern.!

Directory: chapter3, file: noteInvalid.json!
{
 "author":"Jane",

"28

 "title":"Party plan",
 "content":"Surprise party for Jim. Attendees: Sally, Bob so far.",
 "comment1":"Jill checking with Larry",
 "comment10":"Mary has to check schedule, will text later"
}

To see the validation message, use the Pattern: Note (Invalid) example, or use the command,!
validate noteInvalid.json note_schema.json

The validation program will show that the comment10 element is invalid. Note that additionalProperties
must be set to false in the schema definition, otherwise the comment10 element will be accepted –
though it will not be subject to the patternProperties definition, as it will be treated the same as any
other undefined property.!

Dependencies for Properties (3G)
A last structural element is “dependencies”. A dependency allows the presence of one or more
properties to be conditional on the presence of a specified property. This provides a more flexible
definition than afforded by the “required” element for schema definitions that have groups of
properties related to each other.!
Consider the content for online orders from a company that has a loyalty program. A couple of orders
are shown in the following JSON content.!

Directory: chapter3, file: orderValid.json!
{
 "orders":
 [
 {
 "order":"123456789",
 "billTo":"Jane Doe",
 "billAddress":"1234 Elm St, Anytown PA 12345",
 "shipTo":"John Public",
 "shipAddress":"2345 Oak St, Anytown PA 12346",
 "loyaltyId":"A123456",
 "loyaltyBonus":"Free shipping"
 },
 {
 "order":"234567890",
 "billTo":"Jack Smith",
 "billAddress":"111 Main St, Anytown PA 12345"
 }
]
}

For each order, the billing and shipping information may be the same (e.g., self purchase) or different
(e.g., purchase for someone else). Participation in a loyalty program is optional, but if participating,
then there may be a benefit associated with an order. The schema for the order is shown next.!

Directory: chapter3, file: order_schema.json!
In the schema definition, there are three groups of properties,!

• Lines 16-18 are the common properties that are in every order. They are included in line 25 as the
“required” properties.!

• Lines 19-20 are the shipping properties. These are optional as a group, since the billing
information will be used if these are not present. However, if the “shipTo” property is defined,
then the “shipAddress” must also be defined. This dependency is defined on line 28.!

"29

• Lines 21-22 are the properties populated when the person making the order is part of the loyalty
program, otherwise neither of the properties in this group will be present. If a “loyaltyId” is
present, then the “loyaltyBonus” to apply to this order must also be present. This dependency is
defined on line 29.!
 1 {
 2 "$schema":"http://json-schema.org/draft-04/schema#",
 3 "title":"Order",
 4 "description":"Order billing and shipping information",
 5
 6 "type":"object",
 7 "properties":
 8 {
 9 "orders":
10 {
11 "type":"array",
12 "items":
13 {
14 "properties":
15 {
16 "order":{"type":"string"},
17 "billTo":{"type":"string"},
18 "billAddress":{"type":"string"},
19 "shipTo":{"type":"string"},
20 "shipAddress":{"type":"string"},
21 "loyaltyId":{"type":"string"},
22 "loyaltyBonus":{"type":"string"}
23 },
24 "additionalProperties":false,
25 "required":["order", "billTo", "billAddress"],
26 "dependencies":
27 {
28 "shipTo":["shipAddress"],
29 "loyaltyId":["loyaltyBonus"]
30 }
31 }
32 }
33 }
34 }

The use of dependencies provides an easy to understand mechanism for defining relationships
between properties. For more complex relationships between properties, the oneOf, anyOf, or allOf
mechanisms can be used.!

Validation (No Errors)

To validate, use the Dependency: Order (Valid) example, or use the following command in the chapter3
directory.!

validate orderValid.json order_schema.json

The result of the validation is the valid message.!

Validation (Missing Dependency)

When a property listed as a dependency is missing, the validation will fail. The following order is
missing the shipping address for an order that has a person specified to ship the order to.!

Directory: chapter3, file: orderInvalid.json!
{
 "orders":
 [

"30

 {
 "order":"123456789",
 "billTo":"Jane Doe",
 "billAddress":"1234 Elm St, Anytown PA 12345",
 "shipTo":"John Public",
 "loyaltyId":"A123456",
 "loyaltyBonus":"Free shipping"
 }
]
}

To see the validation message, use the Dependency: Order (Invalid) example, or the command,!
validate orderInvalid.json order_schema.json

The message will indicate that the element required to fulfill the dependency (shipAddress) is not
present.!

Choices: allOf, oneOf, anyOf (3H)
The requires and dependencies constraints provide fairly coarse grained mechanisms for conveying
what elements need to be present to the validation processor. When finer grain control is desired, the
allOf, oneOf, and anyOf mechanisms can be used. Each of these elements contain an array, with each
element of the array representing content that will be matched against. The choice of allOf, oneOf or
anyOf determines how the validation processor will treat the results of the matches,!

• allOf requires that all elements in the array are matched successfully.!
• oneOf requires one, and only one, of the elements in the array to match successfully.!
• anyOf requires one or more of the elements in the array to be matched successfully.!

Schema definitions can use allOf, oneOf, and anyOf individually or in combination, providing
significant flexibility for defining elements that have complex definitions or contextual relationships.!
These constraints can apply to values or to properties. When applied to values, the constraint is
defined inline. When applied to properties, the constraint is defined in a manner similar to the
required and additionalProperties constraints. In the latter case, the constraint will have the
appearance of an independent element to the reader of the schema. The examples in this chapter
focus on examples where values are constrained. Chapter 4 provides examples where properties are
constrained, with more detail on schema design for these cases.!

AllOf
The default processing for validation acts as if the allOf constraint is present when doing content
validation. The requires and additionalProperties constraints provide efficient mechanisms for ensuring
the presence of the desired structural elements. Between these, the use of allOf will typically be for
improving conciseness in more complex schema definitions. The example below shows two
representations of the same definition, the first using allOf, and the second without.!

Directory: chapter3, file: choiceAllOf_schema.json!
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title":"Registration",
 "description":"Sports activity registration, 12-14 age bracket", !
 "type":"object",
 "properties":

"31

 {
 "name":{"type":"string"},
 "sex":{"allOf":[{"type":"string"}, {"enum":["M", "F"]}]},
 "age":{"allOf":[{"type":"integer"}, {"minimum":12}, {"maximum":14}]}
 },
 "additionalProperties":false,
 "required":["name", "sex", "age"]
}

File: choiceAllOfImplied_schema.json.!
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title":"Registration",
 "description":"Sports activity registration, 12-14 age bracket", !
 "type":"object",
 "properties":
 {
 “name":{"type":"string"},
 "sex":{"type":"string", "enum":["M", "F"]},
 "age":{"type":"integer", "minimum":12, "maximum":14}
 },
 "additionalProperties":false,
 "required":["name", "sex", "age"]
}

As seen in the definitions for the content constraints for the properties “sex” and “age”, the use of
allOf in the first example explicitly specifies the matching criteria. In the second example, the
matching criteria is implied, as the default processing of the validation will enforce matching against
all specified criteria items.!

Validation (No Errors)

The following JSON content will validate with either of these schema definitions.!
Directory: chapter3, file: choiceAllOfValid.json!
{
 "name":"John Doe",
 "sex":"M",
 "age":12
}

To validate using the explicitly defined schema, use the Choice: All Of (Valid) example, or use the
following command in the chapter3 directory.!

validate choiceAllOfValid.json choiceAllOf_schema.json

To validate using the implicitly defined schema, use the Choice: All Of Implied (Valid) example, or use
the following command in the chapter3 directory.!

validate choiceAllOfValid.json choiceAllOfImplied_schema.json

OneOf
When an exclusive choice between elements is desired, the oneOf definition permits an array of
choices to be defined from which one, and only one, must be present.!
The national portion of an international address is defined per country. In the following example, the
national portion of the address is shown for Canada, the United States of America, and Mexico.!
Note, for this example, only three states/provinces are shown for each country, rather than the full
list.!

"32

Directory: chapter3, file: choiceOneOf_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"National address",
 "description":"National portion of an address", !
 "type":"object",
 "oneOf":
 [
 {
 "properties":
 {
 "country":{"type":"string", "enum":["CAN"]},
 "province":{"type":"string", "enum":["AB", "BC", "MB"]},
 "postalCode":{"type": "string",
 "pattern":"^[A-Z][0-9][A-Z][0-9][A-Z][0-9]$"}
 },
 "additionalProperties":false,
 "required":["country", "province", "postalCode"]
 },
 {
 "properties":
 {
 "country":{"type":"string", "enum":["USA"]},
 "state":{"type":"string", "enum":["AL", "AK", "AR"]},
 "zipCode":{"type":"string", “pattern":"^[0-9]{5}(-[0-9]{4})?$"}
 },
 "additionalProperties":false,
 "required":["country", "state", "zipCode"]
 },
 {
 "properties":
 {
 "country":{"type":"string", "enum":["MEX"]},
 "state":{"type":"string", "enum":["AGS", "BC", "BCS"]},
 "postalCode":{"type": "string", "pattern":"^[0-9]{5}$"}
 },
 "additionalProperties":false,
 "required":["country", "state", "postalCode"]
 }
]
}

The validation processor will determine how many choices the content presented matches. If the
number of matches is exactly one, then the content will be accepted.!

Validation (No Errors)

The following shows a valid address to be processed against the schema.!
Directory: chapter3, file: choiceOneOfValid.json!
{
 "country":"USA",
 "state":"AK",
 "zipCode":"99501"
}

To validate, use the Choice: One Of (Valid) example, or use the following command.!
validate choiceOneOfValid.json choiceOneOf_schema.json

"33

The content matches the USA address definition for the country property enumeration, use of the
property name state, valid enumeration for the property state, use of the property name zipCode, and
format of the zipCode.!
The content does not match either of the Canada or Mexico definitions, thus the content is valid.!

Validation (No Match)

In this address, the value of the country property is incorrect for the remainder of the content.!
Directory: chapter3, file: choiceOneOfInvalid.json!
{
 "country":"USA",
 "province":"AB",
 "postalCode":"A1B2C3"
}

To see the validation message, use the Choice: One Of (Invalid) example, or the command,!
validate choiceOneOfInvalid.json choiceOneOf_schema.json

The validation processor will find the following as it matches against each choice,!
• The USA definition will match on country, but have incorrect property names for the other

elements.!
• The CAN definition will not match the country enumeration, but will match the other properties.!
• The MEX definition will not match the country enumeration, state property, or the format for

postalCode.!
Since there is no matching schema in the selection of oneOf choices, the validation fails.!

AnyOf
When using anyOf condition, a property can be validated a set of criteria that may include criteria
that can match multiple times.!
In this example, a play day activity is being set up for a school that has many different class sizes.
Four team sizes are defined, and for some team sizes, the team can select which category they want to
compete in. A team size of 4 or 10 provides this choice of category. !

Directory: chapter3, file: choiceAnyOf_schema.json!
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title":"Team size",
 "description":"Team sizes for play day competitions", !
 "type":"object",
 "properties":
 {
 "size":
 {
 "anyOf":
 [
 {"type":"integer", "minimum":2, "maximum":4},
 {"type":"integer", "minimum":4, "maximum":6},
 {"type":"integer", "minimum":8, "maximum":10},
 {"type":"integer", "minimum":10, "maximum":12}
]
 }
 },

"34

 "additionalProperties":false,
 "required":["size"]
}

The validation processor tries to match the content against each of the choices defined within the
anyOf array. If a match is found for any element, including matching multiple elements, then the
content will be accepted.!

Validation (No Errors)

A team size of 4 will match two of the criteria of the anyOf choices.!
Directory: chapter3, file: choiceAnyOfValid.json!
{
 "size":4
}

To validate, use the Choice: Any Of (Valid) example, or use the following command.!
validate choiceAnyOfValid.json choiceAnyOf_schema.json

The team size of 4 matches the first criteria (2 – 4) and second criteria (4-6), but not the third (8-10) or
fourth (10-12). The valid content message is displayed.!

Validation (No Match)

A team size of 7 will not match any of the anyOf choices.!
Directory: chapter3, file: choiceAnyOfInvalid.json!
{
 "size":7
}

To see the validation message, use the Choice: Any Of (Invalid) example, or the command,!
validate choiceAnyOfInvalid.json choiceAnyOf_schema.json

The validation processor will try to match against each choice, without success. The message will
indicate the lack of a matching choice.!

The Negative Constraint: not
Sometimes the desired validation behavior is to model a negative constraint, that is, to resolve an
element as valid only when it fails to meet validation criteria.!
In the following example, registration for a sports team is being collected including the name, age and
league that the person is signing up for. This registration does not include signing up for the
intramural league, which is handled by a separate registration process. The schema therefore uses a
negative constraint for the “league” property, excluding the choice of “intramural” as a valid value for
this property.!

Directory: chapter3, file: register_schema.json!
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title":"Team registration",
 "description":"Team registration, non-intramural leagues only", !
 "type":"object",
 "properties":
 {
 "name":{"type":"string"},
 "age": {"type":"integer", "minimum":10, "maximum":14},

"35

 "league": {"type":"string", "not":{"enum":["intramural"]}}
 }
}

Negative constraints can be sometimes be difficult to interpret, so information in the description of
the schema can be helpful to understanding the context of any negative constraints.!

Validation (No Errors)

This example uses a registration that contains an allowed value for the “league” property.!
Directory: chapter3, file: registerValid.json!
{
 "name":"John Doe",
 "age":12,
 "league":"District A"
}

To validate, use the Not: Register (Valid) example, or use the following command.!
validate registerValid.json register_schema.json

The “league” value is not “intramural”, which fulfills the not constraint. The valid content message is
displayed.!

Validation (Invalid Value)

The “not” constraint reverses the match result, as shown in the following example.!
Directory: chapter3, file registerInvalid.json!
{
 "name":"John Doe",
 "age":12,
 "league":"intramural"
}

To see the validation message, use the Not: Register (Invalid) example, or the command,!
validate registerInvalid.json register_schema.json

The validation processor will recognize first the match of the value “intramural” with the enumeration
specified for the “league” property. The processor will then apply the “not” constraint, changing the
validation state from a valid state to an invalid state. The message from the validation processor will
indicate that the content did not comply with the “not” condition for the property.!

Object and Array Constraints (3I)
Object and array constraints allow the schema to apply constraints to object (property) and array
(item) definitions. Constraints include number, naming and existence requirements. Cross element
constraints are also available through the choice constraints (allOf, anyOf, oneOf, and not).!

Object Constraints

In the preceding examples, a number of constraints on object definitions have been introduced. These
include the additionalProperties and required constraints.!
In addition, the number of properties allowed can be constrained, with minProperties and
maxProperties. These specify the minimum and maximum number of properties (inclusive) that may
be present. This constraint can be used to ensure that free form content is present (minProperties) and
that a reasonable limit can be placed on the number of properties (maxProperties). These provide both

"36

guidance to the creation of the content, while also allowing programs to anticipate the processing
required for content received.!
Address books allow multiple contact methods to be associated with a contact. This arbitrary set of
methods and addresses can be defined in a schema, while limiting the total number allowed.!

Directory: chapter3, file: contact_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Contacts",
 "description":"Contacts: name, freeform contact methods", !
 "type":"object",
 "properties":
 {
 "name":{"type":"string"}
 },
 "minProperties":1,
 "maxProperties":5,
 "required":["name"]
}

Validation (No Errors)

Valid content includes the “name” property (since it is defined as a “required” property) and 0 to 4
additional properties.!

Directory: chapter3, file: contactValid.json!
{
 "name":"John",
 "mobile":"555 555-1212",
 "email":"john@example.com"
}

To validate, use the Properties: Contact (Valid) example, or use the following command.!
validate contactValid.json contact_schema.json

The total number of properties is 3, which is consistent with the bounds set in the schema.!

Validation (Too Many Properties)

This example satisfies the requirement that “name” is present. However, with 5 contact properties, the
total number of properties is 6.!

Directory: chapter3, file: contactInvalid.json!
{
 "name":"John",
 "home":"555 555-1111",
 "mobile":"555 555-1212",
 "work":"555 555-2222",
 "email":"john@example.com",
 "twitter":"@John"
}

To validate, use the Properties: Contact (Invalid) example, or use the following command.!
validate contactInvalid.json contact_schema.json

The validation fails with a message indicating the total number of properties (6) exceeds the
constraint “maxProperties” set in the schema (5).!

Custom additionalProperties Constraint

"37

In addition to limiting the number of additional properties, the content of each can also be
constrained. Instead of the boolean value true, the additionalProperties definition contains schema
constraints. Extending the contacts example, in this case the additional contacts will be constrained to
allow only North American phone numbers.!
In the following schema, the additional property content is constrained to being a string and
conforming to a North American phone number (such as 555 555-1212).!

Directory: chapter3, file: contactPhone_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Contacts",
 "description":"Contacts: name, freeform contact methods", !
 "type":"object",
 "properties":
 {
 "name":{"type":"string"}
 },
 "minProperties":1,
 "maxProperties":5,
 "required":["name"],
 "additionalProperties":
 {
 "type":"string", "pattern":"^([0-9]{3}) [0-9]{3}-[0-9]{4}$"
 }
}

Validation (No Errors)

By only including phone number contact information in the additional properties, the following
schema is acceptable.!

Directory: chapter3, file: contactPhoneValid.json!
{
 "name":"John",
 "mobile":"555 555-1212",
 "email":"john@example.com"
}

To validate, use the Properties: Contact Phone (Valid) example, or use the following command.!
validate contactPhoneValid.json contactPhone_schema.json

The regular expression is simplistic in this example, but can be more sophisticated.!

Validation (Invalid Content)

In this content, an email address is included as one of the additional properties. Since the constraint
does not allow any content other than North American phone numbers, the validation will fail.!

Directory: chapter3, file: contactPhoneInvalid.json!
{
 "name":"John",
 "home":"555 555-1111",
 "mobile":"555 555-1212",
 "work":"555 555-2222",
 "email":"john@example.com"
}

To validate, use the Properties: Contact Phone (Invalid) example, or use the following command.!
validate contactPhoneInvalid.json contactPhone_schema.json

"38

The validation fails with a message indicating content of the email property is invalid.!

Array Constraints

Array definitions can be constrained to a range of items allowed using the minItems and maxItems
constraints. In addition, the array can be constrained to only allow arrays that have no duplicate
items using the uniqueItems constraint. These are very useful constraints to ensure programs are
receiving an expected number of items, such as a primary server and backup server that are not at the
same address and port number, as shown in this example.!
Note that in this schema example, the “minItems” and “maxItems” constraints are on the same line as
the “type”:”array”. The “uniqueItems” and “additionalItems” constraint still follow the “items” element.
This shows the freedom to arrange the content as desired, in this case to associate the range of
allowed items with the array (which is a familiar construct in array definition syntax in many other
technologies). The characteristics that apply to the elements themselves are then placed in the
position following the item content definition. It is not incorrect syntax to place “minItems” and
“maxItems” following the “items” element, equivalent to the prior example which placed
“minProperties” and “maxProperties” in that manner.!

Directory: chapter3, file:serverArray_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Primary and Backup Servers",
 "description":"IP address/port for primary/backup server pair", !
 "type":"array", "minItems":2, "maxItems":2,
 "items":
 {
 "type":"object",
 "properties":
 {
 "address":{"type":"string"},
 "port":{"type":"integer", "minimum":0, "maximum":65535}
 },
 "required":["address", "port"]
 },
 "uniqueItems":true,
 "additionalItems":false
}

Arrays, like properties, can be constrained in acceptance of items not otherwise specified in the
“items” definition. The boolean constraint “additionalItems” is used. A value of false indicates that only
items matching the specified “items” list are acceptable.!

Validation (No Errors)

The following example shows two server definitions, that do not share the same address / port
definition.!

Directory: chapter3, file: serverArrayValid.json!
[
 {
 "address":"192.168.1.60",
 "port":80
 },
 {
 "address":"192.168.1.61",

"39

 "port":80
 }
]

To validate, use the Array: Server Array (Valid) example, or use the following command.!
validate contactValid.json contact_schema.json

The number of items in the array is 2, which fulfills the constraint defined in the schema.!

Validation (Incorrect Number of Items)

In this example, only one server is defined, the backup server is missing.!
Directory: chapter3, file: serverArrayInvalid1.json!
[
 {
 "address":"192.168.1.60",
 "port":80
 }
]

To validate, use the Array: Server Array (Invalid 1) example, or use the following command.!
validate serverArrayInvalid1.json serverArray_schema.json

The validation fails with a message indicating the number of items present does not meet the
minimum number defined in the schema.!

Validation (Duplicate Items)

In this example, the correct number of items is defined, but the items are identical.!
Directory: chapter3, file: serverArrayInvalid2.json!
[
 {
 "address":"192.168.1.60",
 "port":80
 },
 {
 "address":"192.168.1.60",
 "port":80
 }
]

To validate, use the Array: Server Array (Invalid 2) example, or use the following command.!
validate serverArrayInvalid2.json serverArray_schema.json

The validation fails with a message indicating the items are not unique, as required by the schema.!

Value Constraints (3J)
In the examples so far, elements have been defined with their type defined. This enables a fairly
coarse grained validation of content. For example, an element defined as “type”:”integer” can be
checked to ensure is contains only numbers or the symbols plus or minus.!
Additional constraints can be specified that provide finer grain validation. For example, number
ranges can be added to a port number definition. In the following example, see the constraints that
have been added to the “port” property.!

Directory: chapter3, file: server_schema.json.!
{
 "$schema":"http://json-schema.org/draft-04/schema#",

"40

 "title":"Server",
 "description":"Server name and IP address, port", !
 "type":"object",
 "properties":
 {
 "name":{"type":"string"},
 "address":{"type":"string"},
 "port":{"type":"integer", "minimum":0, "maximum":65535}
 },
 "additionalProperties":false,
 "required":["name", "address", "port"]
}

The addition of the constraints will generate validation messages when the value specified for the
port number is a negative number or exceeds 65535.!

Validation (Valid)

Directory: chapter3, file: serverValid.json!
{
 "name":"Server 14",
 "address":"192.168.1.60",
 "port":80
}

To validate, use the Range: Server (Valid) example, or use the following command.!
validate serverValid.json server_schema.json

The “port” value is in the range 0 to 65535, which fulfills the not constraint. The valid content message
is displayed.!

Validation (Value Out of Range)

Directory: chapter3, file: serverInvalid.json!
{
 "name":"Server 14",
 "address":"192.168.1.60",
 "port":100000
}

To see the validation message, use the Range: Server (Invalid) example, or the command,!
validate serverInvalid.json server_schema.json

In the invalid definition, the value of 100000 for the port number will be flagged as out of range for
the “port” property, and the validation fails.!

Integer and Number: Minimum/Maximum Constraints

Range constraints can be bounded on both ends or only one end. In the previous example, the range
for “port” was constrained on both ends using minimum and maximum. The following example
constrains only the minimum value, allowing any positive integer for the “quantity”.!

"properties":
{
 "quantity":{"type":"integer", "minimum":1}
}

Integer and Number: Exclusive Minimum/Maximum Constraints

Range constraints can inclusive or exclusive, meaning that the boundary of the range is included or
excluded. By default, the exclusiveMinimum and exclusiveMaximum constraints are false, making
"41

minimum and maximum inclusive. For example, a scientific measurement may require a distance
value that is non-zero, but accept values less than one. Using the exclusiveMinimum constraint allows
this to be specified clearly without creating an arbitrary fraction for the minimum value.!

Directory: chapter3, file: distance_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Distance",
 "description":"Distance, must be greater than zero.", !
 "type":"object",
 "properties":
 {
 "distance":{"type":"number", "minimum":0.0, "exclusiveMinimum":true}
 }
}

Validation (No Errors)

The following content defining a small distance is valid.!
Directory: chapter3, file: distanceValid.json!
{
 “distance":0.01
}

To validate, use the Number: Distance (Valid) example, or using the following command.!
validate distanceValid.json distance_schema.json

Validation (Equal to Exclusive Constraint)

However, defining a distance of 0.0 will be invalid as shown in the following example.!
Directory: chapter3, file: distanceInvalid.json!
{
 "distance":0.0
}

To validate, use the Number: Distance (Invalid) example, or using the following command.!
validate distanceInvalid.json distance_schema.json

The validation message will indicate the content is not valid since the value provided is equal to the
exclusive minimum constraint value.!

Integer and Number: MultipleOf Constraint

A value constraint, multipleOf, specifies that a value must be a multiple of a specified number. For
instance, if the multipleOf is specified as 4, then the values 8, 32, and 1024 would be valid, whereas 3,
19, and 1027 would not be valid. For example, to ensure a measurement provided in inches is always
an even foot, a multipleOf value of 12 can be used.!
In this example, a measurement is defined that will represent the length of wood as measured in
inches. However, the constraint will require that the length be an even number of feet (that is, a
multiple of 12).!

Directory: chapter3, file: measure_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Measure",
 "description":"Inches measurement, must be even number of feet",

"42

!
 "type":"object",
 "properties":
 {
 "length":{"type":"integer", "minimum":0, "multipleOf":12}
 }
}

Validation (No Errors)

The following content defining a length of 72 inches (6 feet, zero inches) is valid.!
Directory: chapter3, file: measureValid.json!
{
 "length":72
}

To validate, use the Number: Measure (Valid) example, or using the following command.!
validate measureValid.json measure_schema.json

Validation (Not Multiple Of)

Changing the length to 74 inches (6 feet 2 inches).!
Directory: chapter3, file: measureInvalid.json!
{
 "length":74
}

To validate, use the Number: Measure (Invalid) example, or using the following command.!
validate measureInvalid.json measure_schema.json

With the length no longer being a multiple of 12, the validation message will indicate the value does
not meet the multipleOf constraint defined in the schema.!

String: Length Constraints

Strings can be constrained in their length, both minimum and maximum. For example, first name,
last name and middle name can be constrained for applications that need to provide printed
materials that have predefined locations for name information that have limited space.!

Directory: chapter3, file: name_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Name",
 "description":"Full name, middle name optional", !
 "type":"object",
 "properties":
 {
 "firstName":{"type":"string", "minLength":1, "maxLength":10},
 "middleName":{"type":"string", "minLength":0, "maxLength":8},
 "lastName":{"type":"string", "minLength":1, "maxLength":20}
 },
 "required":["firstName","lastName"]
}

From this definition,!
• The first name is required and must have between 1 and 10 characters.!
• The middle name is optional, but when present can be empty or have no more than 8 characters.!

"43

• The last name is required and must have between 1 and 20 characters.!

Validation (No Errors)

A name definition that is valid.!
Directory: chapter3, file: nameValid.json!
{
 "firstName":"John",
 "middleName":"David",
 "lastName":"Doe"
}

To validate, use the String: Name (Valid) example, or using the following command.!
validate nameValid.json name_schema.json

Validation (Invalid String Length)

Providing a name that has a long middle name.!
Directory: chapter3, file: nameInvalid.json!
{
 "firstName":"Jane",
 "middleName":"Alexandria",
 "lastName":"Doe"
}

To validate, use the String: Name (Invalid) example, or using the following command.!
validate nameInvalid.json name_schema.json

With the middle name exceeding 8 characters in length, the validation will indicate the property
value exceeds the “maxLength” constraint.!

String: Pattern Constraint

Strings may also be constrained to match a pattern. The pattern is defined using a regular expression,
which is resolved according to the ECMAScript definition (ECMA 262). For example, a United States
zip code can be specified using the following regular expression.!

^[0-9]{5}(-[0-9]{4})?$

Which allows 5 digits followed by an optional hyphen and 4 digits. The carat (^) and dollar sign ($)
indicate the zip code must be its own text entity. Using this format in a zip code property can enhance
the ability of the validation processor to recognize not just that the value presented is a string, but
also that it matches the pattern defined.!

Directory: chapter3, file: zipCode_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"US zip code",
 "description":"US zip code with pattern to validate against", !
 "type":"object",
 "properties":
 {
 "zipCode":{"type":"string", "pattern":"^[0-9]{5}(-[0-9]{4})?$"}
 }
}

Validation (No Errors)

"44

A 5+4 zip code is defined.!
Directory: chapter3, file: zipCodeValid.json!
{
 "zipCode":"12345-6789"
}

To validate, use the String: Zip Code (Valid) example, or using the following command.!
validate zipCodeValid.json zipCode_schema.json

Validation (No Pattern Match)

Using the same zip code numbers, but excluding the hyphen.!
Directory: chapter3, file: zipCodeInvalid.json!
{
 "zipCode":"123456789"
}

To validate, use the String: Zip Code (Invalid) example, or using the following command.!
validate zipCodeInvalid.json zipCode_schema.json

When the pattern for the content does not match, the validation processor will indicate that the
element being validated does not meet the pattern constraint.!

String: Format Constraint

Some commonly used data type formats like date and IP addresses are defined in the specification.
This is a convenience, as the equivalent function can also be achieved using “pattern” in data type
definitions. The data types defined for “format” in draft 4 of the specification are “date-time”, “email”,
“hostname”, “ipv4”, “ipv6” and “uri”. For example,!

"properties":  
{  
 "email":{ "type":"string", "format":"email" } 
}

Currently, the support of “format” by validation processors is optional, so the examples in this book
will use “pattern” instead, along with the regular expression for validating against these data types.!

Enumerations

A lot of programming code is devoted to determining the correctness of values provided to the
program. This reflects the variety of manners in which data can be sourced, especially for content that
is entered by a person interactively or in a form that can be hand edited. However, other factors such
as old data that has not been maintained or incorrect function in another application can also present
invalid data to a program.!
Enumerations provide a way to use validation to enforce correctness of data when the data item is
constrained to a particular set of values. For instance, the value for the state in a United States postal
address is one of a specific set of values.!

Directory: chapter3, file: postUSA_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"US postal abbreviations",
 "description":"Postal abbreviations: US states/territories", !
 "type":"object",

"45

 "properties":
 {
 "state":
 {
 "type":"string",
 "enum":["AL", "AK", "AR", "AS", "AZ", "CA", "CO", "CT",
 "DC", "DE", "FL", "FM", "GA", "GU", "HI", "IA",
 "ID", "IL", "IN", "KS", "KY", "LA", "MA", "MD",
 "ME", "MH", "MI", "MN", "MO", "MP", "MS", "MT",
 "NC", "ND", "NE", "NH", "NJ", "NM", "NV", "OH",
 "OK", "OR", "PA", "PR", "PW", "RI", "SC", "SD",
 "TN", "TX", "UT", "VA", "VI", "VT", "WA", "WI",
 "WV", "WY", "AA", "AE", "AP"]
 }
 }
}

When an enumeration is defined, the validation processor will verify that the content being validated
is of the correct type and that it matches one of the values listed within the array associated with the
enumeration.!

Validation (No Errors)

The state of Hawaii (HI) is presented in the example.!
Directory: chapter3, file: postUSAValid.json!
{
 "state":"HI"
}

To validate, use the Enumeration: Post USA (Valid) example, or using the following command.!
validate postUSAValid.json postUSA_schema.json

Validation (No Matching Enumerated Value)

Guessing at the postal abbreviation for Hawaii, a reasonable guess would be “HA”.!
Directory: chapter3, file: postUSAInvalid.json!
{
 "state":"HA"
}

To validate, use the Enumeration: Post USA (Invalid) example, or using the following command.!
validate postUSAInvalid.json postUSA_schema.json

However, the value “HA” is not present in the enumerated list of values for the states of the USA, so
the validation process will not accept this content.!

Default Values

A default value can be included in the specification of an element. When the schema specifies a
default value for an element, and the element is not present in the content, then the element will be
added, and the default value specified in the schema will be assigned to it.!
This capability should be considered in the context of how the content will be used, to ensure proper
expectations of how it will affect processing. Understanding the context is very important, as “default”
does not have any practical use in the context of validation processing as the validation processor
validates against what is present in the content only, it does not create new elements for the content.!

"46

Thus, if the only context for the schema is validation, then default values should not be used. If
default values are present for other uses, it should be understood that they are ignored for validation
purposes.!
However, outside of validation, there are other uses of JSON Schema where “default” can be used as
part of creating content.!
A first use is where default is used in a message generation function, which produces JSON messages
as part of a program or process. For example, a company issues a new policy that requires messages
between divisions of a company to include a division code in each message. However, it may not be
practical to retrofit all programs with additional function to handle managing division codes. Instead,
the division code element is added to the general schema definition (used by validation), and specific
schema definitions are created for each division (used by generation), using default to specify the
division code for each division. The message generation function is then responsible for inserting the
division code element with its specified default value into messages generated.!
The following is a general schema for a chargeback message. It includes the division property, with a
range of valid values representing the divisions of the company.!

Directory: chapter3, file: chargeback_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Chargeback corporate",
 "description":"Chargeback messages for Example Inc", !
 "type":"object",
 "properties":
 {
 "functionCode":{"type":"string"},
 "usageUnits":{"type":"integer"},
 "division":{"type":"integer", "minimum":10, "maximum":30}
 },
 "required":["functionCode", "usageUnits", "division"]
}

Using this as the starting point, schemas can be created for each division, providing the default
division as part of the division specific schema. The following is such a schema, for the Finance
division.!

Directory: chapter3, file: chargebackFinance_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Chargeback finance",
 "description":"Chargeback messages for Finance division", !
 "type":"object",
 "properties":
 {
 "functionCode":{"type":"string"},
 "usageUnits":{"type":"integer"},
 "division":{"type":"integer", "minimum":15, "maximum":30, "default":15}
 },
 "required":["functionCode", "usageUnits", "division"]
}

The constraints for the “division” property still contain the “minimum” and “maximum” constraints,
since a program can still provide the value, and if it does then it has to be valid. The “default” value
will fill in the “division” (in this case 15 for the Finance division) when this value is not provided by
"47

the program. The message generated will then be valid for receipt by the destination division which
can use the chargeback_schema.json general corporate schema to validate the message received.!
A second use of default is in tooling. When an element has multiple selections, such as an
enumeration or number range, specifying a default value can provide the tool with a default selection
as part of its user interface. For example, a schema that includes an enumeration of countries could be
configured with a default for the most commonly selected country.!

Directory: chapter3, file: country_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Location selector",
 "description":"Central American country selection", !
 "type":"object",
 "properties":
 {
 "country":
 {
 "type":"string",
 "enum":["Belize", "Costa Rica", "El Salvador", "Guatemala",
 "Honduras", "Nicaragua", "Panama"],
 "default":"Panama"
 }
 }
}

In this example, the user interface can display the list of Central American countries and default the
selection to “Panama”.!

JSON References (Internal) (3K)
The schema fragments used in this chapter illustrate many of the definition capabilities available
through JSON Schema. Some of these items, like a server definition or the enumeration of states,
would be useful in other schema definitions. The inclusion of references in JSON Schema allows
definitions to be used by reference, rather than duplicating them in each schema element definition.!
References can be made to definitions within the same schema definition, or to definitions in an
external source. This example will use an internal reference.!
The following schema definition is for a postal address in Canada. It includes the use of references for
the “province” and “postalCode” elements that reference other elements within the same schema.!

Directory: chapter3, file postCanadaInternal_schema.json.!
 1 {
 2 "$schema":"http://json-schema.org/draft-04/schema#",
 3 "title":"Postal address for Canada",
 4 "description":"Postal addresses for the country of Canada",
 5
 6 "type":"object",
 7 "properties":
 8 {
 9 "address":
10 {
11 "type":"object",
12 "properties":
13 {
14 "name":{"type":"string"},
15 "number":{"type":"string"},

"48

16 "street":{"type":"string"},
17 "street2":{"type":"string"},
18 "city":{"type":"string"},
19 "province":{"$ref":"#/definitions/CAN_province"},
20 "postalCode":{"$ref":"#/definitions/CAN_postalCode"}
21 },
22 "additionalProperties":false,
23 "required":["name", "number", "street", "city", "province", "postalCode"]
24 }
25 },
26
27 "definitions":
28 {
29 "CAN_province":
30 {
31 "type":"string",
32 "enum":["AB", "BC", "MB", "NB", "NL", "NS", "NT",
33 "NU", "ON", "PE", "QC", "SK", "YT"]
34 },
35 "CAN_postalCode":
36 {
37 "type":"string",
38 "pattern":"^[A-Z][0-9][A-Z]()?[0-9][A-Z][0-9]$"
39 }
40 }
41 }

The new elements in this schema definition are,!
• The addition of a “definitions” element at the bottom of the schema (lines 27-40). This contains the

elements (CAN_province and CAN_postalCode) that can be referenced from elsewhere in the
schema.!

• In the definition of the properties “province” and “postalCode” (lines 19-20), instead of placing
“type”:”string” and the accompanying constraints, references are defined.!

Using internal references has a number of advantages,!
• It can improve the readability of the schema, especially for elements with long enumerations or

complex pattern matching.!
• Commonly used definitions can be separated into one place, rather then duplicated across many

items. This is especially useful if the definition is subject to change, reducing the possibility of
incorrectly duplicating changes across all instances.!

• Ease of change if the definition is later used in a shared schema to be referenced by this and other
schema definitions.!

Looking at the new definition for the “province” property, the definition uses the keyword “$ref”,
indicating the value associated with “$ref” is the URI of the schema to apply to “province”. The URI
defined “#/definitions/province” has three parts,!

• The leading # indicates the location is relative to the current schema context.!
• The fragment /definitions/ is the path portion to the schema element.!
• The fragment CAN_province is the element containing the schema content.!

When the validation processing is performed, and the “$ref” is encountered, the validation processor
will resolve the URI and substitute the content found at the URI into the location of the “$ref”. The
content will then be validated according to the schema content from the reference.!

"49

Validation (No Errors)

To illustrate the use of references, JSON content for an address in the province of Prince Edward
Island (postal abbreviation PE) in Canada will be used.!

Directory: chapter3, file postCanadaValid.json!
{
 "address":
 {
 "name":"John and Jane Doe",
 "number":"1124",
 "street":"Elm Street",
 "city":"Anytown",
 "province":"PE",
 "postalCode":"A1B2C3"
 }
}

To validate, use the Internal Ref: Post Address (Valid) example, or using the following command.!
validate postCanadaValid.json postCanadaInternal_schema.json

Validation (Invalid Content from Referenced Schema)

To verify that the referenced schema was validated against, an invalid address is defined with a
province that does not appear in the enumeration defined in the referenced schema (“PD” is not
defined).!

Directory: chapter3, file: postCanadaInvalid.json!
{
 "address":
 {
 "name":"John and Jane Doe",
 "number":"1124",
 "street":"Elm Street",
 "city":"Anytown",
 "province":"PD",
 "postalCode":"A1B2C3"
 }
}

To validate, use the Internal Ref: Post Address (Invalid) example, or using the following command.!
validate postCanadaInvalid.json postCanadaInternal_schema.json

Since the value “PD” is not present in the enumeration for valid “province” content, an error message
is displayed indicating an invalid value.!

JSON References (External) and the id Keyword (3L)
In the prior topic, the use of external references was mentioned. Using external references allows the
common definitions to be placed in separate resources. These definitions can then be included by
other schema definitions through references.!
External references enable JSON Schema definition to reference other JSON Schema definitions outside
the current document. The benefits of this capability include,!

• Complex schemas can be composed from smaller, possibly reusable, schemas.!
• Schema definitions can exist on other systems, or be accessible from the Internet.!

"50

• URI references are used, allowing access to be made using different protocols, storage systems, or
messaging systems.!

However, there are some operational aspects that need to be considered.!
• Remote access to schemas may be compromised by network failures, provider failures, or

degraded network performance. Use of caches, alternate hosting servers, or similar mechanisms
may be used to mitigate these issues.!

• Version control may need to be incorporated into the definition, storage, and access for the
schema content.!

• URI resolution and fetch logic may need to be incorporated into the validation processors that will
process schemas that include external references. Two approaches will be shown in this topic.!

Use of the Id Keyword

To make content addressable to external access, URI definitions are included in the schema
definitions using the “id” keyword. This URI information is required to enable the schema resolver to
locate the content being referenced.!
The use of “id” element is flexible, it can be used at the root of the schema and/or within elements of
the schema. Where to use “id” is dependent on how the schema is intended to be used. For this
example, the use of an external schema to hold common definitions, a top level “id” definition is
suitable.!
As a practical note, schema processors need to have a base URI for every schema that will be
referenced. Therefore, it makes sense to always have a top level “id” element defined. Anywhere a
URI is expected in a validation processor function/method, this top level “id” will be used (it is fairly
common for schema processors to look for this top level “id” when the URI is not provided).!

Directory: chapter3, file postCanadaCommon_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Canada provincial postal abbreviations",
 "description":"Postal abbreviations for Canada", !
 "id":"http://localhost:8081/schema/postCanadaCommon_schema.json", !
 "definitions":
 {
 "CAN_province":
 {
 "type":"string",
 "enum":["AB", "BC", "MB", "NB", "NL", "NS", "NT",
 "NU", "ON", "PE", "QC", "SK", "YT"]
 },
 "CAN_postalCode":
 {
 "type":"string",
 "pattern":"^[A-Z][0-9][A-Z]()?[0-9][A-Z][0-9]$"
 }
 }
}

The schema definition is similar to any other, except that the content is fragments of schema content
rather than a complete schema definition. The other addition is the “id” element in the sixth line,
declaring the URI for the schema. The elements declared within the schema are referenced relative to

"51

this URI, so for example, http://localhost:8081/schema/postCanadaCommon_schema.json/definitions/
CAN_province will be used in the “$ref” element of a schema definition referencing the CAN_province
element.!

Schema Referencing an External Schema

Using an equivalent to the local reference example, the following is a Canadian postal address
schema definition that references the external schema definitions.!

Directory: chapter3, file: postCanada_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Postal address for Canada",
 "description":"Postal address for Canada", !
 "type":"object",
 "properties":
 {
 "address":
 {
 "type":"object",
 "properties":
 {
 "name":{"type":"string"},
 "number":{"type":"string"},
 "street":{"type":"string"},
 "street2":{"type":"string"},
 "city":{"type":"string"},
 "province":
 {
 "$ref":"http://localhost:8081/schema/postCanadaCommon_schema.json#/
definitions/CAN_province"
 },
 "postalCode":
 {
 “$ref":"http://localhost:8081/schema/postCanadaCommon_schema.json#/
definitions/CAN_postalCode"
 }
 },
 "additionalProperties":false,
 "required":["name", "number", "street", "city", "province", "postalCode"]
 }
 }
}

The use of “$ref” for the “province” and “postalCode” elements specify a URI that is not within the
current schema, since there is content preceding the #. This portion of the URI (in this case http://
localhost:8081/schema/postCanadaCommon_schema.json) is used by the schema processor to locate the
referenced content.!
The behavior of the schema processing is the same as for a local reference, only the retrieval of the
schema content differs. How the schema content from the external schema arrives has many choices.
Three different options are shown in the remainder of this topic.!

The Role of the Schema Processor

URI resolution is performed by the schema processor. URI definitions can be associated with any type
of resource including web resources, file systems, content within a data store, or content that is

"52

dynamically generated. The schema processor is responsible for determining the location the URI
corresponds to and the manner in which interaction with that location is conducted.!
The schema definition itself does not need to know how the schema processor works, or if the
interactions between the schema processor and the resource are the same or different each time. For
instance, cached content can be used when the same resource is accessed multiple times.!
While public web addresses can be used for the URIs, for many deployment cases this will not be
suitable. Local instances of the schema content accessible through reliable networks, with version
control if needed, are more suitable for production use. In addition, URI definitions are not limited to
web servers and may be used to support use of storage facilities such as databases, or flexibility to
use different persistent storage options by deployment configuration.!
To illustrate these different deployment approaches, three deployment models will be shown.!

• The first will use a local web server as the resource manager of the external schema.!
• The second will use the local file system as the resource manager.!
• The third will use a database.!

From these examples, other types of resource managers can be envisioned.!

Web Based Schema Resource Manager

A local web server will be used to provide access to the external schema over the HTTP protocol. Both
Node.js and Python provide a simple web server capability in their default runtime libraries, and
either of these can be used for this example.!
In the example, the URI includes “http://localhost:8081” which will be used for the configuration of the
local web server. If an external web server is used, this part of the URI would be updated with the
appropriate address content (e.g., “http://www.example.com”). The port number 8081 is unlikely to be
already in use, but if it is, any unused port number can be used.!
To start the web server. Open a Terminal / Command Prompt and change directory to the install
location for the book examples (~/bookujs and c:\bookujs are used in the commands that follow, update
these if necessary to match your install location).!
For Node.js on Linux, use the following commands,!

cd ~/bookujs/chapter3/web
node tinyserver.js 8081

For Node.js on Windows, use the following commands,!
cd c:\bookujs\chapter3\web
node tinyserver.js 8081

For Python 3.x on Linux, use the following commands,!
cd ~/bookujs/chapter3/web
python -m http.server 8081

For Python 3.x on Windows, use the following commands,!
cd c:\bookujs\chapter3\web
python -m http.server 8081

For Python 2.x on Linux, use the following commands,!
cd ~/bookujs/chapter3/web
python -m SimpleHTTPServer 8081

For Python 2.x on Windows, use the following commands,!

"53

cd c:\bookujs\chapter3\web
python -m SimpleHTTPServer 8081

This command will start the web server on the port indicated (8081), with the web directory under
chapter3 as the base directory for the web server content. In this directory is the schema directory and
a copy of the file containing the externally referenced schema content
(postCanadaCommon_schema.json).!
When finished running the programs that access the web server content, the web server can be
terminated. Switch to the Terminal / Command Prompt window running the web server, and press
Ctrl-C to terminate it. The Terminal / Command Prompt window can then be closed.!
To run the validation program including retrieval of this content from the web server, open another
Terminal / Command Prompt and in the chapter3 directory use the following command.!

validate postCanadaValid.json postCanada_schema.json

The valid message will be displayed.!
To verify that the external schema is being accessed and validated against, run the validation against
the invalid address using the following command.!

validate postCanadaInvalid.json postCanada_schema.json

This will display the message that the province specified in the address is not valid. Since the
enumeration is only present in the external schema, this verifies that the external schema was used
for the validation.!

File System Based Schema Resource Manager

In the web server example, the external schema content was retrieved by an HTTP request from a
web server. The external schema content itself was in a file accessible to the web server. In this
example, the schema content will be loaded from the file system directly; using the same URI as in the
web example. This will be accomplished by pre-loading the external schema content.!
This example shows how network dependencies can be eliminated when external schemas are used.
The schemas can be copied to a local file system, and the schema processor can be populated with the
schemas from the local source. All the URIs stay the same, so none of the schemas need to be
modified. This ensures schema versions can be verified using comparison, and avoids inadvertent
typographical errors.!
To make the external schema content known to the schema processor, the list of schema files will be
included in the command line arguments. The schemas will then be loaded from the local file system
and populated into the schema cache.!
Note: the validate program (both Javascript and Python versions) is covered in chapter 8, where the
implementation of the schema management function is detailed.!
In many of the examples, the schema processor has been shown using a command similar to the
following,!

validate simpleArray.json simpleArray_schema.json

For this implementation of external references, the additional resources are specified in the command
to start the validate program. The first two arguments are the same (JSON content file and JSON
Schema file). Following these, is the list of files containing referenced schema content. For example,!

validate example.json example_schema.json common_schema.json

"54

Path information can also be used in the command. For example, if the externally referenced content
is in a shared location (e.g., a directory named common), the command for Linux would be,!

validate example.json example_schema.json ../common/common_schema.json

For Windows, it would be,!
validate example.json example_schema.json ..\common\common_schema.json

When the schema processor receives arguments that include external reference sources, it will
perform the following actions.!

• The JSON content file and JSON Schema file will be read and each validated for correct JSON
syntax.!

• For each reference schema, the file will be read, validated for correct JSON syntax, and added to
the schema content for the schema validation.!

• The schema validation will be performed (Tiny Validator or jsonschema).!
• The valid response or error response and information will be handled.!

The URI resolution for the $ref and id elements are resolved within the schema content, the naming
and organization of the file resources does not impact the resolution of the schema references. This
allows the file resources to be placed freely, without impacting the schema content.!
To run this example, the same JSON content and JSON Schema files will be used as the prior example.
However, this time the web server that served the external schema content will no longer be running
(if the web server is still running from the prior example, shut it down before running this example to
show that it is not used). By using this as the example, the use case described in the opening of this
example is demonstrated.!
To run the validation of a valid address, use the following command,!

validate postCanadaValid.json postCanada_schema.json postCanadaCommon_schema.json

The valid message will be displayed.!
To verify that the external schema is being accessed and validated against, run the validation against
the invalid address using the following command.!

validate postCanadaInvalid.json postCanada_schema.json postCanadaCommon_schema.json

The message will display that the value for province is not valid, the same error as the preceding web
example.!
With the same commands as used for the web server example, the example has shown that the same
schemas can be used with different schema resource management approaches to achieve the same
processing results.!

JSON Schema Database Resource Manager

Managing schemas is not limited to files, they can also be stored using other approaches. A simple
database, using JSON of course, is used to show this. The name jsbd (JSON Schema Database) will be
used.!

• The persistent storage will be in the file jsdb.json. This file is located in the tools/node/validate and
tools/python/validate directory (same file content in each).!

• The URI for an external reference is “jsdb:aaa#bbb” where jsdb: is the resource, aaa is the location
and bbb is the fragment within the schema.!

"55

• Nothing special is required in the validate command syntax, this feature will be used for any
references using the “jsdb:” URI.!

To show the use of the jsdb database, the postal address example will be modified to use the database
to store the schema content.!
Note: the source code for the validate program (both Javascript and Python versions) is shown in
chapter 8, where the implementation of the pre-loading function is detailed.!
The schema file is updated to use the new URI, but the JSON content file remains the same.!

Directory: chapter3, file: postCanada_jsdb_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Postal address for Canada",
 "description":"Postal address for Canada", !
 "type":"object",
 “properties":
 {
 "address":
 {
 "type":"object",
 "properties":
 {
 "name":{"type":"string"},
 "number":{"type":"string"},
 "street":{"type":"string"},
 "street2":{"type":"string"},
 "city":{"type":"string"},
 "province":{"$ref":"jsdb:postCAN#/definitions/CAN_province"},
 "postalCode":{"$ref":"jsdb:postCAN#/definitions/CAN_postalCode"}
 },
 "additionalProperties":false,
 "required":["name", "number", "street", "city", "province", "postalCode"]
 }
 }
}

The content is the same except for the $ref values for province and postalCode. The URI content now
starts with jsdb: to indicate the resource manager and the location is specified as postCAN since a
database URI is a key style resource rather than a file style resource. The remainder of the URI
(starting with #) is the same, referencing the same content within the schema.!
To run the validation of a valid address, use the following command,!

validate postCanadaValid.json postCanada_jsdb_schema.json

The valid message will be displayed.!
To verify that the external schema is being accessed and validated against, run the validation against
the invalid address using the following command.!

validate postCanadaInvalid.json postCanada_jsdb_schema.json

As with the prior two examples, the value for province is displayed as not valid for the schema.!
As will be discussed in greater detail in chapter 8, the database schema manager only loads the
schemas that are needed for the schema being processed. Thus the jsdb database could contain a large
number of schemas, but the schema processor will only fetch and load the schemas actually used.
This can ease management of large deployments, while ensuring efficient processing.!

"56

Special note: This example used a new URI structure (jsdb:) to illustrate the flexibility offered by the
use of URIs for references. If preserving the original URI was required, this could be achieved by
using a URI mapper to identify those URIs to fetch from the database instead of from the original
location. This is similar to the pre-load approach in the prior example, but using the database as the
pre-load source rather than the file system.!

Nested Reference Schema Definitions

Schema definitions can contain references, including schema definitions that are references. Thus,
schema definitions can have many layers. This extends the concept of schema reuse, enabling schema
definitions to be assembled in many forms. An example is provided in the person example, where a
three layer schema definition is used. The example uses a JSDB resource, which makes the layered
definition easy to see.!

Directory: chapter3, file: person_jsdb.json!
[
 {
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Person",
 "description":"Simple person definition", !
 "id":"jsdb:person", !
 "type":"object",
 "properties":
 {
 "name":{"type":"string"},
 “address":{"$ref":"jsdb:address#"}
 },
 "required":["name", "address"]
 },
 {
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Address",
 "description":"Simple address", !
 "id":"jsdb:address", !
 "type":"object",
 "properties":
 {
 "street":{"type":"string"},
 "city":{"type":"string"},
 "zipcode":{"$ref":"jsdb:zipcode#/definitions/zipcode"}
 },
 "required":["street", "city", "zipcode"]
 },
 {
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Zip code",
 "description":"Zip code", !
 "id":"jsdb:zipcode", !
 "definitions":
 {
 "zipcode":
 {
 "type":"string",

"57

 "pattern":"^[0-9]{5}(-[0-9]{4})?$"
 }
 }
 }
]

The first entry (with id jsdb:person) includes a property, address, that is defined through a reference
($ref jsdb:address#).!
The second entry (with id jsdb:address) includes a property, zipcode, that is defined through a reference
($ref jsdb:zipcode#/definitions/zipcode).!
The third entry (with the id jsdb:zipcode) contains the definition to be applied to the zipcode property.!
When the schema processor encounters a reference for jsdb:person, it will load the corresponding
schema (the first entry). This will surface a new dependency, the jsdb:address reference, which when
loaded will surface the last dependency, jsdb:zipcode. This process is recursive, with each layer
resolved, the schema processor needs to determine if any new dependencies were introduced, and if
so, resolve those. The following is an example of a simple schema that contains a reference to the
jsdb:person schema.!

Directory: chapter3, file: person_jsdb_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Person",
 "description":"Person, for multi level references example", !
 "type":"object",
 "properties":
 {
 "person":{"$ref":"jsdb:person#"}
 },
 "additionalProperties":false,
 "required":["person"]
}

To show validation, a valid JSON document is shown first.!
Directory: chapter3, file: personValid.json!
{
 "person":
 {
 "name":"John Doe",
 "address":
 {
 "street":"123 Oak St",
 "city":"Anytown",
 "zipcode":"12345"
 }
 }
}

To run the validation, use the following command.!
validate -j=person_jsdb.json personValid.json person_schema.json

To show that all the layers were resolved, an invalid JSON document contains a zip code that does
not conform to the constraint defined in the lowest layer schema.!

Directory: chapter3, file: personInvalid.json!
{
 "person":
 {

"58

 "name":"John Doe",
 "address":
 {
 "street":"123 Oak St",
 "city":"Anytown",
 "zipcode":"12345ABC"
 }
 }
}

To run the validation, use the following command.!
validate -j=person_jsdb.json personValid.json person_schema.json

This example is simplified to focus on the depth mechanism. However, the benefits of granularity
control and flexible schema composition allow the value of this mechanism to be easily imagined for
complex schema libraries.!

Other Resource Managers

General purpose databases, source code control systems, or specialized schema management systems
are all possible locations where schema content can be stored and accessed from. Each alternative
provides its own features and benefits suited to different needs.!
The resource manager can vary in implementation to suit the particular system needs. As shown in
this chapters examples, the level of abstraction, order of loading, and storage / access method are all
design decisions for the implementer of the resource manager.!
The standards activities for JSON Schema do not include definition of interfaces for validation
libraries or programming languages, so using custom resource managers requires programs to
program to the interfaces of the resource managers and validation library chosen. Chapter 8 shows
two different implementations using different resource managers, each suited to the libraries and
programming languages used.!

Using External References in the JSON Validate Web Tool

The JSON Validate web tool includes a References section which allows up to 8 schema definitions to be
included with the primary schema.!
The examples provided use the same content as the earlier web and file resource examples.!

• The External Ref: Post Address (Valid) example will populate the schema, content and first reference
fields in the tool. Press the Validate button to show the valid result.!

• To show an error result, load the External Ref: Post Address (Invalid) example and press the Validate
button.!

To use more than one reference schema in the JSON Validate tool, select from the numbered tabs in the
References section, and enter content into each tab needed. If any of the reference schema content is
invalid, the tabs that contain errors will be highlighted with a red border.  

"59

4. Conditional Content

What if the portions of the JSON content are dependent on the value of one of its elements? There are
many examples, and different approaches that can be considered. Some examples,!

• An object has four properties, of which two are always required and two are optional. The required
keyword provides an efficient expression of this constraint.!

• An object has four properties, but two of those properties are mutually exclusive. A combination
of the oneOf and required keywords can express this.!

• An object has properties that are only present if a particular property is present. The dependencies
keyword can be used to define this constraint.!

• A group of properties is dependent on the value of a selector property. Using an object definition
with an enumeration and oneOf can be used to define this relationship.!

These example can be combined to express a wide variety of conditional content constraints. A key
enabler of this flexibility is the many places where schema definitions can be embedded within the
schema itself. The additionalProperties examples in chapter 3 showed both the boolean option and the
schema option for the constraint.!

Mutually Exclusive Properties
Designing a schema where properties are mutually exclusive can utilize the oneOf constraint to
prevent conflicting properties being present in the same content.!
In this example, the a schema for taxpayer identification in the United States of America is defined. A
particular entity will only have one identifier, although that could be one of several types.The
property name is always required, while only one of the properties ssn (Social Security Number), ein
(Employer Identification Number) or itin (Individual Taxpayer Identification Number) is allowed.!

Directory: chapter4, file taxEntity_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Taxation Id",
 "description":"Identification number for taxation purposes", !
 "type":"object",
 "properties":
 {
 "name":{ "type":"string" },
 "ssn":{ "type":"string", "pattern":"^[0-9]{3}-[0-9]{2}-[0-9]{4}$" },
 "ein":{ "type":"string", "pattern":"^[0-9]{2}-[0-9]{7}$" },
 "itin":{ "type":"string", "pattern":"^9[0-9]{2}-[0-9]{2}-[0-9]{4}$" }
 },
 "required":["name"],
 "additionalProperties":false, !
 "oneOf":
 [
 { "required":["ssn"] },
 { "required":["ein"] },
 { "required":["itin"] }
]
}

"60

The object definition contains all the possible properties. The name property is defined in the required
constraint with the object definition. A separate oneOf constraint is defined at the same level as the
object definition. It uses the oneOf constraint with an enclosed array of required constraints, indicating
that one, and only one, required constraint must be met. This ensures that one of the identifiers is
present, and that no combination of two or more is present.!
Since the identifier type is not conditional on another property, and the object is not too busy when
listing the presented options, using this definition approach is simple to comprehend and use. If there
were a large number of options or other properties, creating a hierarchical holding object would be a
design consideration.!
To test the example, valid (taxEntityValid.json) and invalid (taxEntityInvalid.json) examples are
provided in the chapter4 directory. These can be used with the validate command line tool using the
taxEntity_schema.json schema. In the JSON Validate web tool, import the examples 4A Mutually
Exclusive: Tax Entity (Valid) and 4A Mutually Exclusive: Tax Entity (Invalid).!

Dependent Properties
In the order example (chapter 3, Dependencies for Properties (3G)), the dependencies constraint was used to
express the relationship between the properties for the shipping information and the properties for
the loyalty program. The example enabled the schema to require the presence of a property when
another property was present.!
The dependencies constraint can also be defined using a schema, allowing conditional content
definition through the constraint.!
In the following modified version of the order example, the dependency for the shipTo property is
defined as a schema containing two properties (shipAddress and signature). The order schema content
does not include these two properties, instead they are declared within the dependency schema
definition. The properties are only introduced when the shipTo property is used.!

Directory: chapter4, file order2_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Order",
 "description":"Order billing and shipping information", !
 "type":"object",
 "properties":
 {
 "orders":
 {
 "type":"array",
 "items":
 {
 "properties":
 {
 "order":{"type":"string"},
 "billTo":{"type":"string"},
 "billAddress":{"type":"string"},
 "shipTo":{"type":"string"}
 },
 "required":["order", "billTo", "billAddress"],
 "dependencies":
 {
 "shipTo":

"61

 {
 "properties":
 {
 "shipAddress":{"type":"string"},
 "signature":{"type":"boolean"}
 },
 "required":["shipAddress","signature"]
 }
 }
 }
 }
 }
}

To test the example, valid (orderValid2.json) and invalid (orderInvalid2.json) examples are provide in
the chapter4 directory. These can be used with the validate command line tool using the
order2_schema.json schema. In the JSON Validate web tool, import the examples 4B Dependent
Properties: Order (Valid) and 4B Dependent Properties: Order (Invalid).!

Selector Driven Schemas
When conditional content is associated with the value of a property (a selector), a selectable content
pattern can be applied.!
For instance, portions of international mailing addresses are dependent on the country the address is
in. These include the names of the elements (e.g., province, state, postal code, zip code) and the
format of the elements (e.g., varying length and structure of postal codes).!
The following example shows a schema covering addresses for the North American countries of
Canada, United States of America, and Mexico.!
To improve readability, the schema is shown in two sections. The second section contains the
province/state and postal code/zip code definitions.!

Directory: chapter4, file postNorthAmerica_schema.json!
Breaking the first part of the schema down into sections,!

• Lines 1-8 are the standard leading content for JSON content with an object as the root element.!
• Lines 9-13 define the “address” element as an object.!
• Lines 14-18 define the properties for the address that are present in all forms of a North American

address.!
• Line 19 introduces the divergence of properties, using the name “national” to indicate the context

of the divergence.!
• Line 21 uses the JSON Schema keyword “oneOf” which indicates that one, and only one, of the

following must be satisfied by the JSON content being validated. “oneOf” is an array type, and
what follows is an array containing the elements that will be compared.!

• Lines 23-32 contain the definition for a valid Canada address.!
• Lines 33-42 contain the definition for a valid United States of America address.!
• Lines 43-52 contain the definition for a valid Mexico address.!
• Lines 53-59 finish the definition with the additionalProperties and required constraints.!

"62

Local references are used to the definitions of state/province and postal code/zip code for each
country. These definitions are on lines 61-104, covered in the second section.!
The element that acts as the selector in the schema is the “country” element (lines 26, 36 and 46). Note
that each country element is an enumeration with a single value. This element must be present in
every address, and acts as the selector for the country specific content present in each “national”
element.!

 1 {
 2 "$schema":"http://json-schema.org/draft-04/schema#",
 3 "title":"North America address",
 4 "description":"Postal addresses for Canada, USA and Mexico",
 5
 6 "type":"object",
 7 "properties":
 8 {
 9 "address":
10 {
11 "type":"object",
12 "properties":
13 {
14 "name":{"type":"string"},
15 "number":{"type":"string"},
16 "street":{"type":"string"},
17 "street2":{"type":"string"},
18 “city":{"type":"string"},
19 "national":
20 {
21 "oneOf":
22 [
23 {
24 "properties":
25 {
26 "country":{"type":"string", "enum":["CAN"]},
27 "province":{"$ref":"#/definitions/CAN_province"},
28 "postalCode":{"$ref":"#/definitions/CAN_postalCode"}
29 },
30 "additionalProperties":false,
31 "required":["country", "province", "postalCode"]
32 },
33 {
34 "properties":
35 {
36 "country":{"type":"string", "enum":["USA"]},
37 "state":{"$ref":"#/definitions/USA_state"},
38 "zipCode":{"$ref":"#/definitions/USA_zipCode"}
39 },
40 "additionalProperties":false,
41 "required":["country", "state", "zipCode"]
42 },
43 {
44 "properties":
45 {
46 "country":{"type":"string", "enum":["MEX"]},
47 "state":{"$ref":"#/definitions/MEX_state"},
48 "postalCode":{"$ref":"#/definitions/MEX_postalCode"}
49 },
50 "additionalProperties":false,
51 "required":["country", "state", "postalCode"]
52 }
53]
54 }

"63

55 },
56 "additionalProperties":false,
57 "required":["name", "number", "street", "city", "national"]
58 }
59 },

The second part of the schema specifies the province / state list for each country and the postal
code / zip code patterns for each. The definition names start with the country prefix, keeping the
schema names unique even when different countries use the same name for the individual elements.!

 61 "definitions":
 62 {
 63 "CAN_province":
 64 {
 65 "type":"string",
 66 "enum":["AB", "BC", "MB", "NB", "NL", "NS", "NT",
 67 "NU", "ON", "PE", "QC", "SK", "YT"]
 68 },
 69 "CAN_postalCode":
 70 {
 71 "type":"string",
 72 "pattern":"^[A-Z][0-9][A-Z]()?[0-9][A-Z][0-9]$"
 73 },
 74 "USA_state":
 75 {
 76 "type":"string",
 77 "enum":["AL", "AK", "AR", "AS", "AZ", "CA", "CO", "CT",
 78 "DC", "DE", "FL", "FM", "GA", "GU", "HI", "IA",
 79 "ID", "IL", "IN", "KS", "KY", "LA", "MA", "MD",
 80 "ME", "MH", "MI", "MN", "MO", "MP", "MS", "MT",
 81 "NC", "ND", "NE", "NH", "NJ", "NM", "NV", "OH",
 82 "OK", "OR", "PA", "PR", "PW", "RI", "SC", “SD",
 83 "TN", "TX", "UT", "VA", "VI", "VT", "WA", "WI",
 84 "WV", "WY", "AA", "AE", "AP"]
 85 },
 86 "USA_zipCode":
 87 {
 88 "type":"string",
 89 "pattern":"^[0-9]{5}(-[0-9]{4})?$"
 90 },
 91 "MEX_state":
 92 {
 93 "type":"string",
 94 "enum":["AGS", "BC", "BCS", "CAM", "COAH", "COL", "CHIH",
 95 "CHIS", "DF", "DGO", "GTO", "GRO", "HGO", "JAL",
 96 "MEX", "MICH", "MOR", "NAY", "NL", "OAX", "PUE",
 97 "QRO", "Q ROO", "SLP", "SIN", "SON", "TAB",
 98 "TAMPS", "TLAX", "VER", "YUC", "ZAC"]
 99 },
100 "MEX_postalCode":
101 {
102 "type":"string",
103 "pattern":"^[0-9]{5}$"
104 }

When a validation processor is checking the JSON content, resolution of the “country” element
provides the validation process with the definition to apply for the remainder of that element. This
includes the names of the elements (e.g., “province” or “state”) and constraints to apply to the element.
For instance, Canada and Mexico both use the name “postalCode”, but in Canada this is a mixed
alphanumeric that is 6 or 7 characters long, whereas in Mexico it is a 5 digit number.!

"64

To test the example, valid (postCanadaValid.json) and invalid (postCanadaInvalid.json) examples are
provide in the chapter4 directory. These can be used with the validate command line tool using the
postNorthAmerica_schema.json schema. In the JSON Validate web tool, import the examples 4C Selector
Driven Content: Address (Valid) and 4C Selector Driven Content: Address (Invalid).!

Alternative Implementations for Selector Driven Schemas
There are other ways to address conditional content, that may be applicable in different use cases. To
illustrate some of these, a database configuration example will be used.!
Many programs use databases, and a desirable feature for many of these programs is user selection of
which database to use. However, each database has its own configuration options such as naming
and parameters for connectivity.!
If the approach shown above for the North American address was used, instead of using country as
the selector, the database name and version would be the selector. The configuration data for each
database choice would be encapsulated within this construct.!
Other options for addressing this include isolated schemas, generic database configuration
definitions, or a comprehensive list of elements.!

Isolated Schema Definitions

This is a direct derivative to the selector driven example, using separate schema definitions for each
selection.!
Instead of placing the database definition in the main schema, the main schema could contain the key
information (in this case, database and version), with a reference to separate schema definitions for
each database. Each separate schema would contain database specific elements.!
This has the advantage of being extensible by populating the schema repository with additional
database schema definitions without updating the base schema. The disadvantage is the additional
schema management.!

Separate Schema Definitions

Copies of the full schema can be created that each include the specific content for each database. The
name of the schema would then act as the selector. For instance,!

• program_db_a_3_schema.json for version 3 of database product A.!
• program_db_b_5_schema.json for version 5 of database product B.!

The advantage is a simple schema for each database configuration. The disadvantages include,!
• Changes to common elements require cascading the changes through every definition.!
• Programs needs to keep a registry of schema names or have a static naming convention.!
• Additional schema management required.!

Generic Database Configuration

In this approach, the conditional constraint is not used. Instead, a generic database definition is
created that can be applied to all possible databases. The program using the configuration data will
then be responsible for translating the generic data into a form acceptable for the database being
used.!
"65

The advantage to this approach is that the schema is the same regardless of database to be used. The
two main disadvantages are,!

• The person writing programs that use the schema needs to understand how to translate the
generic definition into the specific database data.!

• The use of database specific features may be limited by the lack of data provided.!

Comprehensive Configuration

Instead of abstracting away as the generic definition does, the comprehensive definition provides a
broad list of elements. Each database fills in those elements that are relevant to itself. Like the generic
approach, this has the advantage of having a single base definition. However, like the generic
approach, the program using the definition needs to know what elements to use and which to ignore.
This approach also loses the ability for validation to find many configuration errors since the
relationships between elements don't have the context of database specific schema definitions.!

Uses for the Conditional Content Approaches
The techniques for defining schema definitions to address conditional content can be used in a variety
of ways. The selection of technique will be driven by a combination of functionality, readability, and
usability. There is often a choice in approach, and the weight of factors to consider for different
schemas may vary. A schema intended for broad infrequent use may weight readability heavily,
whereas an optimized business to business transaction schema may accept more complexity for more
precise constraint definition.!
As shown in the address example, complex data types that vary in implementation can be factored
into common and unique elements. Validation constraints can then be associated with each instance
of the unique elements. This approach can also be used for managing content differences between
versions of a schema. Common elements can be shared, whereas version specific elements can be
isolated using a version identifier to encapsulate version specific content.  

"66

5. Configuration Files

Configuration files are often a good candidate for using JSON and JSON Schema.!
• Typically, configuration files are read and written as a whole, which fits well with file based

storage and databases that store JSON documents.!
• The content storage format and the in-memory representation of the content are well aligned,

whether the programming language is Javascript or not. Serialization and deserialization
mechanisms are available, allowing the persistent form to be used across programs using different
languages and/or runtime platforms.!

• Configurations are often intended to be human readable, and editable, outside of the execution of
the program using the configuration. Since JSON is a text format, it supports this activity.!

• Validation of content is practical, and can be performed both by the program consuming the
content and by independent validation processes. This augments the benefit of human editing
activity, since the content can be validated as part of the editing process.!

Configurations may be single files or multiple files, the design of the individual system can determine
the appropriate implementation approach. The use of files in a file system is shown in the example,
however other equivalent persistent storage options can be used (e.g., database support JSON
content, database with arbitrary content field support (e.g., BLOB), cloud storage repository, or
similar).!

Example Configuration File
A system that has multiple server programs on a single physical or virtual server instance needs to
ensure that each server program is given its own IP port to prevent conflicts. The IP port assignments
also must not conflict with any existing ports being used, or use any of those planned for future use.
The use of a configuration file, rather than limiting port choice to hard coding, to enable assignment
of the IP ports is therefore useful.!
The files for this example are found in the chapter5 directory. This directory contains the configuration
file, the configuration schema, and three each of Javascript and Python program files.!
To begin, the server definitions for two servers are shown in the following configuration file,
startup.json.!

Directory: chapter5, file: startup.json!
{
 "servers":
 [
 {
 "name":"Web Server",
 "start":true,
 "program":"webserver",
 "port":8301
 },
 {
 "name":"Data Server",
 "start":true,
 "program":"dataserver",
 "port":8302

"67

 }
]
}

The schema for the startup configuration content supports defining an array of server definitions.!
Directory: chapter5, file: startup_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Server start up",
 "description":"List of servers to start", !
 "type":"object",
 "properties":
 {
 "servers":
 {
 "type":"array",
 "items":
 {
 "type":"object",
 "properties":
 {
 "name":{"type":"string"},
 "start":{"type":"boolean"},
 "program":{"type":"string"},
 "port":{"type":"integer"}
 },
 "additionalProperties":false,
 "required":["name", "start", "program", "port"]
 }
 }
 }
}

While the content shows two servers, the schema defines an array without a limit of two elements,
allowing additional servers to be defined if desired.!

Programs Consuming the Configuration File
The program that consumes the configuration file is shown next (Javascript/Node.js, then Python
versions). It reads the configuration file, and processes each of the servers definition present.!

Directory: chapter5, file: startup.js!
 1 /*
 2 * Server launcher
 3 */
 4 var fs = require ("fs");
 5 var fork = require ("child_process").fork;
 6
 7 //if module invoked directly, call main
 8 if (require.main === module) {
 9 main ();
10 }
11
12 /**
13 * Load configuration and initiate server launches.
14 */
15 function main () {
16 console.log ("Reading configuration from startup.json.");
17 // load configuration file, with server startup data
18 var configuration = null;

"68

19 try {
20 var data = fs.readFileSync ("startup.json");
21 configuration = JSON.parse (data);
22 } catch (e) {
23 console.log ("Error loading configuration: " + e.message);
24 process.exit (1);
25 }
26 // start servers
27 launchServers (configuration.servers);
28 }
29
30 /**
31 * Launch all servers marked with start:true.
32 * @param {object} servers List of servers to launch
33 */
34 function launchServers (servers) {
35 // for each server in configuration
36 for (var ctr = 0; ctr < servers.length; ctr++) {
37 var server = servers[ctr];
38 // if server marked to start
39 if (server.start) {
40 // populate port number in args, start child process
41 console.log ("Starting " + server.name);
42 var args = ["--port=" + server.port];
43 fork (server.program + ".js", args, null, startError);
44 }
45 }
46 }
47
48 /**
49 * On error starting a server, display message, terminate program.
50 * @param {string} error Error message
51 */
52 function startError (error) {
53 console.log ("Error starting server: " + error);
54 process.exit (1);
55 }

In the Javascript/Node.js version of the startup program,!
• In the main function, lines 20-21 load the configuration data from the startup.json file, parse it. If

either of these throw an exception, lines 23-24 print a message and terminate the program.
Otherwise, the function to start the servers is called (line 27).!

• In the launchServers function, line 36 walks through the list of servers defined in the configuration
file. Line 39 determines if the server is to be started (start is true), and if so, lines 41 to 43 will
display a message then start a child process as specified by the server definition. The fork library
call accepts a function to call if an error occurs starting the process, which is the startError
parameter in this example.!

• The startError function, lines 52-55, prints a message then terminates the program.!
Since the processes created with this program are child processes of the startup program and the
child process output is not otherwise captured, the output of the child programs will be displayed
along with the parent program. When the parent program is terminated (pressing Ctrl-C), the child
processes will be terminated as well.!

Directory: chapter5, file: startup.py!
 1 """
 2 Server launcher
 3 """

"69

 4 from json import loads
 5 from subprocess import Popen
 6 import sys
 7 from time import sleep
 8
 9 def main ():
10 print ("Reading configuration from startup.json.")
11
12 # load configuration file, which contains the startup
13 # directions for all servers.
14 try:
15 # read the file and convert to a JSON object
16 data = open ("startup.json", "rU").read ()
17 except IOError as e:
18 print ("Error reading configuration file: " + e.strerror)
19 sys.exit (1)
20
21 try:
22 configuration = loads (data)
23 except Exception as e:
24 print ("Invalid JSON content in startup.json")
25 sys.exit (1)
26
27 launchServers (configuration["servers"])
28
29 def launchServers (servers):
30 # for each server in configuration
31 processes = []
32 for server in servers:
33 # if server marked to start
34 if server["start"]:
35 # set port number in arguments and start child process
36 print ("Starting " + server["name"])
37 program = server["program"] + ".py"
38 port = "--port=" + str (server["port"])
39 process = Popen (["python", program, port])
40 processes.append (process)
41 # allow child process messages to display
42 sleep (0.25)
43
44 for process in processes:
45 process.wait ()
46
47 if __name__ == "__main__":
48 main ()

For the Python version of the startup program, in the main function,!
• Lines 14-19 load the configuration data from the startup.json file, printing a message and

terminating the program if an error occurs.!
• Lines 21-25 parse the loaded data, printing a message and terminating the program if an error

occurs.!
• Line 27 calls the launchServers function with the list of servers to start.!

In the launchServers function, a mechanism is used to keep the main process active while the child
processes are running. This will then allow termination of the main process to also terminate the child
processes.!

"70

• Line 31 creates a list to hold the set of processes created, line 40 adds each process created to the
list, and lines 44-45 have the parent process wait on the child processes to all end. The termination
of the parent process will also then terminate the child processes.!

• Line 32 walks through the list of servers defined in the configuration file. Line 34 determines if the
server is to be started (start is true), and if so, lines 36 to 40 will display a message then start a
child process as specified by the server definition.!

• Line 42 adds a short (¼ second) delay between starting child processes to prevent overlapping
display output from the child processes. (this is just a convenience for the example display output,
it is not necessary for other implementations).!

Since the processes created with this program are child processes of the startup program and the
child process output is not otherwise captured, the output of the child programs will be displayed
along with the parent program. When the parent program is terminated (pressing Ctrl-C), the child
processes will be terminated as well.!

Executing the Startup Programs

The programs started by the startup program in this example (webserver and dataserver) are Javascript/
Node.js and Python programs corresponding with the runtime of the example. However, this is only a
convenience for the example, child processes using other technologies can also be started using the
same library functions from each runtime.!
To start the Javascript/Node.js version of the program, the following command can be used in the
chapter5 directory in a Terminal or Command Prompt window.!

node startup.js

To start the Python version of the program use!
python startup.py

The program will start two child processes, one containing the web server and one containing the
data server. While the program logic for the two servers is simply returning placeholder text, they
will start according to the content specified in the configuration file. The configuration can be
updated to achieve different results in subsequent executions. Changes include not starting both
servers (specifying false for the start element of a server), changing port numbers, or adding
additional servers, such as two web server instances.!

Supporting Programs

The programs defined in the configuration file (webserver and dataserver) are minimal web servers that
will display a message, but provide no other function. The port number that they use is defined in the
configuration file and passed through the –PORT argument to the program. The source code for the
webserver program (Javascript/Node.js and Python) are shown next. The dataserver program source is not
shown (it is the same except for the message returned from the HTTP GET), but it is included in the
accompanying materials.!

Directory: chapter5, file: webserver.js!
/*
 * Web Server
 */
var http = require ("http"); !
// port number to listen on for requests

"71

var port = 8301; !
// process arguments for port number argument
var command = process.argv.slice (2);
command.forEach (function (arg) {
 if (arg[0] === "-") {
 var elements = arg.split ("=");
 var key = elements[0].toUpperCase ();
 if ((key === "-P") || (key === "--PORT")) {
 port = elements[1];
 }
 }
}); !
// start HTTP server listener
var server = http.createServer (function (request, response) {
 // processing logic goes here
 response.writeHead (200, { "Content-type":"text/html" });
 response.write ("Web content goes here.");
 response.end ();
}); !
// listen for messages on specified port
server.listen (port);
console.log ("Web server listening on port " + port);

Directory: chapter5, file: webserver.py!
"""
Web Server
"""
try:
 # Python 3
 from http.server import BaseHTTPRequestHandler, HTTPServer
except ImportError:
 # Python 2
 from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer
import sys !
def main ():
 # port number to listen on for requests
 port = 8301 !
 # process arguments for port number argument
 for arg in sys.argv[1:]:
 index = arg.find ("=")
 if index > -1:
 key = arg[0:index].upper ()
 value = arg[index + 1:len (arg)]
 if (key == "-P") or (key == "--PORT"):
 port = int (value) !
 # listen for messages on specified port
 server = HTTPServer (("localhost", port), Handler)
 print ("Web server listening on port " + str (port))
 try:
 server.serve_forever ()
 except KeyboardInterrupt:
 server.shutdown ()
 server.server_close () !
class Handler (BaseHTTPRequestHandler):
 # processing logic goes here
 def do_GET (self):
 self.send_response (200)

"72

 self.send_header ("Content-type", "text/html")
 self.end_headers ()
 self.wfile.write ("Web content goes here.".encode ("utf8"))
 return !
if __name__ == "__main__":
 main ()

After the startup program has launched these servers, a web browser can be started and the servers
can be interacted with using the URLs,!

• http://localhost:8301!
• http://localhost:8302!

Update the port number to match the port specified in the configuration file if the original
configuration is changed.!

Summary
Configuration files can have a wide span of requirements. They often expand in scope over time, and
often require the ability to express relationships between elements. As you read the next chapter,
consider configuration cases where the relationships expressed in the organization / employee
example can be applied to configuration scenarios.  

"73

6. Simple Data Management

There are a variety of options available for storing and accessing JSON content in databases. As seen
in the prior examples, using files for persistent storage is also suitable for many uses. For programs
that store persistent data, but have very limited data management needs, a text file using the JSON
format is an option to consider. Some characteristics to factor into the decision,!

• Is there an advantage to being able to view the data without any special tools (for instance, using
a text editor)?!

• Is the data intended to be editable, and if so, is use of a text editor an acceptable tool for editing?!
• Is the data able to be read and written as a whole, rather than updates of individual objects/

records?!
• Is the data accessed only by a single person at a time?!

If the answer to these characteristics is yes, or not applicable, then using JSON files as the basis for
storing this data is worth considering.!
If the answer to one, or both of, the last two questions is no, then JSON may still be applicable as a
data format for content, but with a more robust data management system. Databases that support
JSON content are available, and range in capability from basic data storage up to highly available
distributed databases.!

Usage Examples
Personal use applications such as note-taking, games, and address books can have limited data sets
with varying content between stored objects.!
Evaluation and educational versions of software programs may have limited use editions, with
predefined data. These may also be intended for users that have limited familiarity with the program
or use of database products, or have limited time to setup, configure, and manage a database. For
these limited editions, a built-in, file based, data management function can be a suitable option.!

Capabilities for Simple Data Management
Many of the capabilities for simple data management build on the those introduced by the
configuration file example. Some additional capabilities are introduced when more general purpose
data file uses are considered, including,!

• Multiple files are more common with data files. This is partly historical, many file based programs
have used one record format per file, since their flexibility was limited by positional data layouts
(e.g., comma separated value files) or modeled after relational or similar record based data
definition approaches.!

• Use of keys and key references are often used to tie together records for different data elements.
For example, a set of orders contains a customer number element that corresponds to a unique
record in the set of customers.!

"74

Using JSON and JSON Schema is suitable for both single file and multiple file scenarios. When
multiple files are present, and they are small, having the flexibility to consolidate them into a single
file can be beneficial.!
The use of keys and key references (e.g., foreign keys in relational databases) is not directly addressed
by JSON Schema in its current draft. A couple of features can be used to address a portion of this
capability.!

• Constraints can be defined on the elements in the different definitions to ensure that keys and
references are the same data type, and have the same content constraints (e.g., all customer
numbers are integers in the range of 1 to 99999).!

• The required constraint can be used to ensure a value is always present for those elements that will
be referenced.!

However,!
• JSON Schema definitions do not include a definition mechanism to link two elements together.

Therefore, knowledge of the relationship between the elements is left to the schema processor to
implement independent of the schema definition.!

• The check to determine whether the linked elements all have matching values is not part of the
schema processing. To perform this validation, the schema processor needs to implement an
additional feature to process these links to scan for lacking of matching elements.!

• No capability is addressed for changes in the in-memory representation of the data or in the
writing of the data that determines whether content being produced is valid (e.g., if a customer
element is deleted, are any order elements containing references to that customer left orphaned).!

If these capabilities are required, the program is required to supplement the JSON Schema capabilities
to implement these features.!

Example: Organization and Employee Data
The data model for employees in an organization provides a good example for covering the concepts
related to JSON Schema use for simple data management. The benefits of this choice for the example
are,!

• Multiple files are used, and multiple object types are included in the organization file.!
• Use of references, including a self reference (organizational hierarchy) and cross references

(employee to organizational unit).!
• The data model is familiar, and easy to extend.!

To start, the organization data is shown.!
Directory: chapter6, file: orgValid.json!
{
 "units":
 [
 {
 "unitId":1,
 "unitOf":0,
 "name":"Corporate"
 },
 {
 "unitId":100,

"75

 "unitOf":1,
 "name":"Finance"
 },
 {
 "unitId":101,
 "unitOf":100,
 "name":"Audit"
 },
 {
 "unitId":200,
 "unitOf":1,
 "name":"Human Resources"
 }
],
 "board":
 [
 {
 "name":"Ann Allen",
 "independent":true,
 "chair":false
 },
 {
 "name":"Bob Baker",
 "independent":true,
 "chair":false
 },
 {
 "name":"Carrie Conner",
 "independent":false,
 "chair":true
 }
]
}

The organizational units are defined in a hierarchical structure, where a unit is either the top level
unit (has no parent unit, indicated by the value 0 for the unitOf element) or a sub-unit (has a parent
unit specified in the unitOf element). There is only one top level unit per organization.!
A second object type is also included, the board members. Inclusion of these two related items with
different data definitions in the same file, demonstrates the flexibility in placement of data items into
persistent storage as suited to the individual requirements for each system.!
Next, the employee data is shown.!

File: chapter6, file: employeeValid.json!
{
 "employees":
 [
 {
 "name":"Adam Ames",
 "unit":100,
 "title":"Staff Accountant"
 },
 {
 "name":"Barbara Barnes",
 "unit":101,
 "title":"Auditor"
 },
 {
 "name":"Carrie Conner",
 "unit":1,
 "title":"Board Chair and CEO"
 },

"76

 {
 "name":"Dan Davis",
 "unit":200,
 "title":"Benefits Analyst"
 }
]
}

The employee data contains the name and title for each employee, along with the unit they work in.
This unit corresponds with the organizational unit definition (employee.unit with org.units.unitId).!
The schema definitions for the organization data follows.!

File: chapter6, file: org_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Organization",
 "description":"Unit hierarchy and board members", !
 "type":"object",
 "properties":
 {
 "units":
 {
 "type":"array",
 "items":
 {
 "type":"object",
 "properties":
 {
 "unitId":{"type":"integer", "minimum":1, “maximum":9999},
 "unitOf":{"type":"integer", "minimum":0, "maximum":9999},
 "name":{"type":"string"}
 },
 "additionalProperties":false,
 "required":["unitId", "unitOf", "name"]
 }
 },
 "board":
 {
 "type":"array",
 "items":
 {
 "type":"object",
 "properties":
 {
 "name":{"type":"string"},
 "independent":{"type":"boolean"},
 "chair":{"type":"boolean"}
 },
 "additionalProperties":false,
 "required":["name", "independent", "chair"]
 }
 }
 }
}

The schema definition for the employee data follows.!
File: chapter6, file: employee_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Employee",
 "description":"Employee data",

"77

!
 "type":"object",
 "properties":
 {
 "employees":
 {
 "type":"array",
 "items":
 {
 "type":"object",
 "properties":
 {
 "name":{"type":"string"},
 "unit":{"type":"integer", "minimum":1, "maximum":9999},
 "title":{"type":"string"}
 },
 "additionalProperties":false,
 "required":["name", "unit", "title"]
 }
 }
 }
}

Using the schema validation tool will show the data conforms to the schema definition for each, using
the following commands.!

validate orgValid.json org_schema.json
validate employeeValid.json employee_schema.json

In both cases, the result of the validate program will be a message showing the content is valid.!
This example shows the applicability of JSON and JSON Schema to define the structure for persistent
data, ability to model the data structures and content, and flexibility in implementation.!

Valid Data, Invalid Cross-Reference
What happens when an employee is added, the assigned unit for the employee is in the valid range of
unit numbers, but the unit does not exist in the organization data?!

Directory: chapter6, file: employeeInvalid.json!
{
 "employees":
 [
 {
 "name":"Adam Ames",
 "unit":100,
 "title":"Staff Accountant"
 },
 {
 "name":"Barbara Barnes",
 "unit":101,
 "title":"Auditor"
 },
 {
 "name":"Carrie Conner",
 "unit":1,
 "title":"Board Chair and CEO"
 },
 {
 "name":"Dan Davis",
 "unit":200,
 "title":"Benefits Analyst"
 },

"78

 {
 "name":"Ed Edwards",
 "unit":300,
 "title":"Systems Analyst" !
 }
]
}

The new employee, Ed Edwards, is part of the Information Technology department (unit 300),
however this unit is not yet included in the organization data. Run the validation program against the
employee schema using,!

validate employeeInvalid.json employee_schema.json

The result of the validate program is a message stating the content is valid. The unit number is
validated against the schema definition of the number range between 1 and 99999, into which 300 is
valid.!
One option would be to update the employee schema definition to use an enumeration for the unit
values, and to source the list of unit numbers from the org schema. For very static data this might be
an appropriate choice, but for data that can change this is unlikely to be practical.!
Another option is adding a validation step that supplements the base validation. Instead of using the
validation tool as a standalone program, it will instead be used as a library and paired with custom
logic to perform the cross-referencing portion of the validation.!

Additional Custom Validation
In addition to the employee / organization unit cross reference, there are additional validation items
that can be considered for inclusion in custom validation.!

• Validate presence of one, and only one, element value across a set of elements (organization has
only one top level unit).!

• Verifies uniqueness of sub-elements across the set of elements (organizational unitId).!
• Verifies the self references are valid for the organization hierarchy (unitOf always has a

corresponding unitId).!
JSON Schema supports uniqueness checking for schema elements, but this does not extend to discrete
values within schema elements. For example, in chapter 3 under Array Constraints, the Validate
(Duplicate Items) example showed where two identical server definitions were rejected by the
validation process since they did not conform with the uniqueItems constraint. However, the
uniqueItems constraint could not be specified as only applying to a subset of the server object
definition. In the case of the organization unit id element, the uniqueness validation is of interest to
these discrete sub-elements, not the whole element.!
The self-reference validation is a variant of the cross reference validation.!

Custom Validation Processor
To provide the set of validation processing capabilities that include the base JSON Schema validation,
along with the three additional custom validation steps identified, a custom validation processor will
be created.!
The program performs the following steps,!
"79

• Use the existing validate program and JSON Schema library to perform the syntax and schema
validation processing of the content against the schema.!

• Add new validation steps,!
• Verify that all unitId values are unique.!
• Logic to determine hierarchy validation for the organization. Verifies presence of one, and only

one, top level unit. Verifies all unitOf references are to an existing unitId.!
• Logic to determine if all employee unit references are to an existing unitId in organization.!

At the completion of the processing, a message is displayed indicating successful validation or an
error message if the validation is not successful.!

Launcher Module

A launcher module, checkOrg.js / checkOrg.py, is provided that processes the command line and calls
the custom validation function.!

Javascript / Node.js version

Directory chapter6, file: checkOrg.js!
/**
 * Validate organization
 *
 * Usage: node check orgFile employeeFile
 */
var validateOrg = require ("./validateOrg").validateOrg; !
// if module invoked directly, call the module function
if (require.main === module) {
 main ();
} !
/**
 * Parse command line and initiate validation.
 */
function main () {
 var orgFile = null;
 var empFile = null;
 // process positional command line arguments
 var args = process.argv.slice (2);
 args.forEach (function (arg) {
 if (arg[0] !== "-") {
 // assign positional arguments
 if (orgFile === null) {
 orgFile = arg;
 } else {
 empFile = arg;
 }
 }
 }); !
 // if both files not specified, command is invalid
 if ((orgFile === null) || (empFile === null)) {
 console.log ("Usage: node check orgFile employeeFile");
 console.log (" orgFile JSON file - organization");
 console.log (" employeeFile JSON file - employees");
 process.exit (1);
 } !

"80

 // call organization validation processor
 validateOrg (orgFile, empFile);
} !
// module exports
exports.main = main;

Python version

Directory: chapter6, file: checkOrg.py!
"""
Validate organization !
Usage: python check.py orgFile employeeFile
"""
from argparse import ArgumentParser
import sys
from validateOrg import validateOrg !
def main ():
 """
 Parse command line and initiate validation.
 """
 parser = ArgumentParser ()
 parser.add_argument ("orgFile", help="Organization input file")
 parser.add_argument ("empFile", help="Employee input file")
 args = parser.parse_args () !
 # call organization validation processor
 validateOrg (args.orgFile, args.empFile) !
if __name__ == "__main__":
 main ()

The launcher calls the custom validation processor with the names of the organization and employee
data files to validate.!

Custom Validation Processor – Javascript / Node.js Version

Directory: chapter6, file: validateOrg.js!
The first part includes the callable function, validateOrg. It loads the organization and employee
schemas, and runs the base validation processor against the provided files respectively. It then
invokes each of the custom validation functions.!

/**
 * Validate the organization data and employee data
 */
var jsonvalidate = require ("ujs-jsonvalidate");
var validate = jsonvalidate.validate; !
/**
 * Validate organization structure and content.
 * @param {string} orgFile Organization JSON file name.
 * @param {string} empFile Employee JSON file name.
 */
function validateOrg (orgFile, empFile) {
 var orgSchema = "org_schema.json";
 var empSchema = "employee_schema.json"; !
 // validate organization data
 var units = null;
 validate (orgFile, orgSchema, null, null, function (code, data, msg) {

"81

 if (code === jsonvalidate.VALID) {
 units = data.units;
 } else {
 console.log ("Error processing organization: " + msg);
 process.exit (code);
 }
 }); !
 // validate employee data
 var employees = null;
 validate (empFile, empSchema, null, null, function (code, data, msg) {
 if (code === jsonvalidate.VALID) {
 employees = data.employees;
 } else {
 console.log ("Error processing employees: " + msg);
 process.exit (code);
 }
 }); !
 // call custom validation functions
 verifyTopLevelUnit (units);
 verifyUniqueUnitIds (units);
 verifyUnitIds (units);
 verifyEmployeeUnits (employees, units);
}

The first custom validation function, verifyTopLevelUnit, determines whether the organization contains
the correct top level unit structure. It does this by inspecting the units, and determining whether there
is one, and only one, unit that has no parent unit. A success or failure message is displayed.!

/**
 * Verify org has one, and only one, top level unit.
 * @param {object[]} units Array of unit objects.
 */
function verifyTopLevelUnit (units) {
 var topLevelUnitsCount = 0;
 for (var ctr = 0; ctr < units.length; ctr ++) {
 if (units[ctr].unitOf === 0) {
 topLevelUnitsCount ++;
 }
 }
 // display results
 if (topLevelUnitsCount === 0) {
 console.log ("Error: Missing top level unit");
 } else if (topLevelUnitsCount === 1) {
 console.log ("Valid: Organization top level unit valid");
 } else {
 console.log ("Error: Multiple top level units defined");
 }
}

The second custom validation function, verifyUniqueUnitIds, checks for duplicate unit identifiers. A
message is displayed for any duplicates found.!

/**
 * Verify unitId is unique across all units.
 * @param {object[]} units Array of unit objects.
 */
function verifyUniqueUnitIds (units) {
 for (var ctr1 = 0; ctr1 < units.length; ctr1 ++) {
 var currentUnitId = units[ctr1].unitId;
 for (var ctr2 = ctr1 + 1; ctr2 < units.length; ctr2 ++) {
 if (currentUnitId === units[ctr2].unitId) {
 console.log ("Error: Duplicate unitId " + currentUnitId);

"82

 break;
 }
 }
 }
}

The third custom validation function, verifyUnitIds, verifies that all units in the organization have a
parent unit. Failure messages are displayed for any orphan units. A success message is displayed if
the hierarchy has no orphan units.!

/**
 * Verify org has valid unitId for all unitOf references.
 * @param {object[]} units Array of unit objects.
 */
function verifyUnitIds (units) {
 var orgValid = true;
 for (var ctr1 = 0; ctr1 < units.length; ctr1 ++) {
 var unitOf = units[ctr1].unitOf;
 if (unitOf !== 0) {
 var validUnitOf = false;
 for (var ctr2 = 0; ctr2 < units.length; ctr2 ++) {
 if (unitOf === units[ctr2].unitId) {
 validUnitOf = true;
 break;
 }
 }
 if (validUnitOf === false) {
 console.log ("Error: Invalid unitOf " + unitOf);
 orgValid = false;
 }
 }
 }
 if (orgValid === true) {
 console.log ("Valid: Organization hierarchy is valid");
 }
}

The last custom validation function, verifyEmployeeUnits, works across the two data sets, determining
whether all employees have valid unit identifiers by verifying the unit identifiers are valid in the
organization data. A failure message is displayed for any employee assigned to an invalid unit. A
success message is displayed if all employees are assigned to valid units.!

/**
 * Verify all employee unit references are valid org units.
 * @param {object[]} employees Array of employee objects.
 * @param {object[]} units Array of unit objects.
 */
function verifyEmployeeUnits (employees, units) {
 var allValid = true;
 for (var ctr1 = 0; ctr1 < employees.length; ctr1 ++) {
 var validUnit = false;
 var empUnit = employees[ctr1].unit;
 for (var ctr2 = 0; ctr2 < units.length; ctr2 ++) {
 if (empUnit === units[ctr2].unitId) {
 validUnit = true;
 break;
 }
 }
 if (validUnit === false) {
 console.log ("Error: Invalid employee unit " + empUnit);
 allValid = false;
 }
 }

"83

 if (allValid === true) {
 console.log ("Valid: All employee unit references valid");
 }
} !
// exports
exports.validateOrg = validateOrg;

This last section also declares the export for the validateOrg function. The execution instructions to
exercise the custom validation tests follow the Python section.!

Custom Validation Processor – Python Version

Directory: chapter6, file: validateOrg.py!
The first part includes the callable function, validate. It loads the organization and employee schemas,
and runs the base validation processor against the provided files respectively. It then invokes each of
the custom validation functions.!

"""
 * Validate the organization data and employee data
"""
from jsonValidate import validate
import sys !
def validateOrg (orgFile, empFile):
 """
 Validate organization structure and content.
 Args:
 orgFile Organization JSON file name.
 empFile Employee JSON file name.
 """
 orgSchema = "org_schema.json"
 empSchema = "employee_schema.json" !
 # validate organization data
 units = None
 code, data, message = validate (orgFile, orgSchema, None, None)
 if code == 0:
 units = data["units"]
 else:
 print ("Error processing organization: " + message)
 sys.exit (code) !
 # validate employee data
 employees = None
 code, data, message = validate (empFile, empSchema, None, None)
 if code == 0:
 employees = data["employees"]
 else:
 print ("Error processing employees: " + message)
 sys.exit (code) !
 verifyTopLevelUnit (units)
 verifyUniqueUnitIds (units)
 verifyUnitIds (units)
 verifyEmployeeUnits (employees, units)

The first custom validation function, verifyTopLevelUnit, determines whether the organization contains
the correct top level unit structure. It does this by inspecting the units, and determining whether there
is one, and only one, unit that has no parent unit. A success or failure message is displayed.!

def verifyTopLevelUnit (units):

"84

 """ verify org has one, and only one, top level unit """
 topLevelUnitsCount = 0
 for unit in units:
 if unit["unitOf"] == 0:
 topLevelUnitsCount += 1 !
 # display results
 if topLevelUnitsCount == 0:
 print ("Error: Missing top level unit")
 elif topLevelUnitsCount == 1:
 print ("Valid: Organization top level unit valid”)
 else:
 print ("Error: Multiple top level units defined")

The second custom validation function, verifyUniqueUnitIds, checks for duplicate unit identifiers. A
message is displayed for any duplicates found.!

def verifyUniqueUnitIds (units):
 """ verify unitId is unique across all units """
 for index1 in range (len (units)):
 currentUnitId = units[index1]["unitId"]
 for index2 in range (index1 + 1, len (units)):
 if currentUnitId == units[index2]["unitId"]:
 print ("Error: Duplicate unitId " + str (currentUnitId))
 break

The third custom validation function, verifyUnitIds, verifies that all units in the organization have a
parent unit. Failure messages are displayed for any orphan units. A success message is displayed if
the hierarchy has no orphan units.!

def verifyUnitIds (units):
 """ verify org has valid unitId for all unitOf references """
 orgValid = True
 for units1 in units:
 if units1["unitOf"] != 0:
 validUnitOf = False
 for units2 in units:
 if units1["unitOf"] == units2["unitId"]:
 validUnitOf = True
 break !
 if not validUnitOf:
 print ("Error: Invalid unitOf " + str (units1["unitOf"]))
 orgValid = False !
 if orgValid:
 print ("Valid: Organization hierarchy is valid")

The last custom validation function, verifyEmployeeUnits, works across the two data sets, determining
whether all employees have valid unit identifiers by verifying the unit identifiers are valid in the
organization data. A failure message is displayed for any employee assigned to an invalid unit. A
success message is displayed if all employees are assigned to valid units.!

def verifyEmployeeUnits (employees, units):
 """ verify all employee unit references are valid org units """
 allValid = True
 for employee in employees:
 validUnit = False
 empUnit = employee["unit"]
 for unit in units:
 if empUnit == unit["unitId"]:
 validUnit = True
 break !

"85

 if not validUnit:
 print ("Error: Invalid employee unit " + str (empUnit))
 allValid = False !
 if allValid:
 print ("Valid: All employee unit references valid")

To exercise the custom validation functions, the next step executes the custom validation processor
with different data sets.!

Validation Data Examples
A variety of organization and employee data files are provided, allowing combinations to be used to
exercise each of the functions provided in the custom validation processor.!

Validation (No Errors)

First, the new validation program will be run with the valid employee data. This verifies that the new
program is consistent with the base validation in recognizing correct content. Use one of the
following commands.!

node checkOrg.js orgValid.json employeeValid.json
python checkOrg.py orgValid.json employeeValid.json

The result of the command will be a valid content message.!
In the next examples, the validation program is run with the invalid content that passes the JSON
Schema base validation (correct structure and content), but contains incorrect data that is outside the
bounds of the JSON Schema specification. !

Validation (Missing Top Level Unit)

If the top level unit of the organization is removed (the unit with unitOf value 0), then the
organization content will be considered invalid. Use one of the following commands.!

node checkOrg.js orgInvalid1.json employeeValid.json org
python checkOrg.py orgInvalid1.json employeeValid.json org

The result will indicate that the content is invalid with message “Error: Missing top level unit in
organization”.!

Validation (Multiple Top Level Units)

If more than one top level unit of the organization is present (multiple units with unitOf value 0), then
the organization content will be considered invalid. Use one of the following commands.!

node checkOrg.js orgInvalid2.json employeeValid.json org
python checkOrg.py orgInvalid2.json employeeValid.json org

The result will indicate that the content is invalid with message “Error: Multiple top level units in
organization”.!

Validation (Non-Unique Sub-Element)

No two units can have the same unit identifier (unitId). If there are duplicates, the content is invalid.
Use one of the following commands.!

node checkOrg.js orgInvalid3.json employeeValid.json org
python checkOrg.py orgInvalid3.json employeeValid.json org

The message displayed will indicate that a unit identifier (101) in the organization is a duplicate.!

"86

Validation (Invalid Self Reference)

The organization data model uses a self referencing structure to relate each unit with its parent unit. If
the parent of a unit (unitOf) is not valid, then the content is considered invalid. Use one of the
following commands.!

node checkOrg.js orgInvalid4.json employeeValid.json org
python checkOrg.py orgInvalid4.json employeeValid.json org

The message displayed will indicate that a self reference (2) is not to a valid unit in the organization.!

Validation (Invalid Cross Reference)

Each employee is associated with a unit of the organization. When the unit in the employee element
does not match a unit in the organization, the combination of the organization and employee content
is invalid, even if each is individually valid otherwise. Use one of the following commands.!

node checkOrg.js orgValid.json employeeInvalid.json org
python checkOrg.py orgValid.json employeeInvalid.json org

The message displayed will indicate that the employee unit (300) in the new employee is not a valid
unit in the organization.!

Persistent State Validation Versus In Flight Validation
So far, the validation processes have been defined and performed in the context of the persistent state
of the content. In the initial definition for simple data management, allowing external editing of the
data was one of the possible capabilities, which then requires the persistent state to be validated in
whole.!
However, this is not the only possible approach to using JSON Schema for database uses. As shown in
the various examples, schema definitions can be very rich. From the message exchange example, the
validation can be performed as content is received. Combining these two concepts, a validation
model for changes to data can be derived. When a change to data is being performed (addition,
update, or deletion) the schema definition can be used to determine whether the change will result in
a valid data representation.!

• Are the elements introduced complete and correct according to the schema definition?!
• Does the resulting data representation after the changes maintain completeness and correctness?!

With JSON Schema, the integrity within the scope of the element being changed is well covered. The
data management engine receiving the change request can!

• Validate the incoming content, using the schema processor!
• Construct an interim representation of the potential change, placing the new/changed content in

the context of the whole database.!
• Validate the interim representation, for example ensuring that a uniqueItems constraint is met.!
• When validation is complete, apply the changes to the database.!

For additional custom validation steps, the in flight validation processor can provide these steps in a
manner similar to the organization example in this chapter. The base JSON Schema validation
provides the first level of validation, and then additional validation steps can be provided by the
custom processor. These can include,!

• Unique element checking, for example if an element is used as a key that requires it to be unique.!
"87

• Cross reference checking if the database supports a foreign key type of mechanism.!
There are many potential variations on how content can be managed and accessed, but a common
step across these alternatives is the core validation processing provided by a JSON Schema processor.
The flexibility to build on, and extend, this capability to fit many use cases and technologies is a key
recognition of the role the schema plays.!

Growing Into a Database
Program requirements can change over time. The simple data management requirements for the first
version of a program may grow into requirements that are no longer a good fit for a file based
persistence approach. Fortunately, moving to a database persistence option is possible.!
Generally, databases supporting JSON content do not build in general purpose or extensible schema
validation capabilities. Some limited validation is done to ensure that content is valid, and that
required elements are present (typically an identifier). However, the schema definition for the general
content remains in the scope of the program, not the database.!

• If storing the data as a whole doesn't change, then the JSON content stays the same. While the
storage container switches from a file to a database entry, the content itself doesn't change.!

• The relationships between the program, schema validation processor, schema validation
extensions and the persistence function remain the same, although their implementations will
reflect interactions with the substituted persistence function.!

• The validation processing can apply both inbound (read) and outbound (create, update)
interactions.!

If the new requirements also drive a different storage approach for some, or all, of the data, then the
content will remain the same for the elements being stored, but the structural elements may change.
For instance,!

• Splitting the unit hierarchy and board elements in the organization schema would be a simple
change. The validation for each element can be applied independently for the retrieval / storage
of each element.!

• Treating each unit as an individual document would be a translation from a single array object
being stored to a collection containing the set of unit documents. While not affecting the schema
validation for the content of each unit definition, the custom validation logic that validates across
the set of units would include logic to work with the database collection, rather than just
retrieving with the single array element.!

If the driving requirements are related to adding transactional capabilities, the transition of some
elements to a more granular storage representation will be typical. However, if the requirements are
driven by consolidation, then minimal changes are likely to be needed.!

Domain Specific Validators
The custom validation logic shown in the employee and organization example is an application
specific validator. However, each of the validation steps is likely to be usable in many more contexts,
though the schemas and element names may differ for each.!

"88

This raises the opportunity for domain specific validators, where the validation logic is applied by
using a template or generic validation function and feeding it schema specific content.!
When considering the relationship between elements, there are two common scenarios that this may
apply to.!

• Type consistency. For example, the unit an employee is assigned in the employee data and the
unit is also defined in the organization data. These two definitions must be consistent across the
two places they are used.!

• Value consistency. For example,!
• In the organization data, all organization unit identifiers must be unique.!
• In a cross element relationship, the unit an employee is assigned must be present as a unit in the

organization data.!
For the type consistency case, when both schema definitions are managed together, the use of
references allows a single definition to be used for many element definitions. However, if the schema
definitions are not managed together, or arbitrary schemas can be combined, then the domain specific
validator can read each schema and determine whether the element definition pairs inspected are
compatible.!
When the type consistency is not an exact match, it can be augmented with value consistency. For
example, one schema may specify unit as an integer in the range 0 to 1000, and the second may have
the range 0-99999. The content validation can determine that all content is compliant to both (i.e., all
content is valid for the union of the ranges).!
The logic for value consistency between elements of the same schema is a generic pattern, which can
be applied to many schemas. Whether the elements are contained in one schema or cross schema,
defining the relationships and performing the validation are straightforward.!
Using the organization and employee example, consider how the different validation steps could be
applied with other schemas, and how they could be generalized to be used with any schema
(template or configuration driven).!
Other domains may apply special meaning to some content values, which may not be possible to
express in JSON Schema. For example, when multiple elements are constrained by a formula rather
than by individual value. The domain specific validator can apply the formula to the collective
elements, such as ((Element A + Element B) * Element C < 1.0).!
Augmenting the core JSON Schema validation processes with domain specific validation processes is a
mechanism that can be used to extend the validation scope to include relationship validation and / or
address domain specific requirements.  

"89

7. Designing Software for JSON Message Exchange

Message exchange often occurs between systems that are managed independently (whether separate
organizations or different groups within an organization). In many cases, there will be many parties
that interact. It is important to ensure that message content is correct and complete. Invalid messages
can be generated through errors (program or human), mismatch in versions of a message format, or
malevolence.!

• Validation ensures the content of the message has the expected structure and content.!
• Validation can apply in both directions. Not only can it be performed on incoming message

content, it can be performed on outgoing messages to ensure messages sent are valid.!
• In conjunction with other security capabilities, validation can be part of an overall system to

detect and reject invalid traffic at an early point in its processing.!
For some types of content, the content contains elements that are arbitrary. An example is a message
that contains a web page, where the defined elements includes the site address, but the page content
itself is arbitrary HTML. For this scenario, the schema definition can be used by the validation
processing to determine if the required elements are present and correctly formatted, and that the
arbitrary content is in the correct location. However, other processing, such as a malware scanner,
may be required to ensure that the arbitrary content is allowable.!

Implementing Programs that use JSON Message Exchange
Sending and receiving messages that contain JSON content is very common for programs interacting
through the Internet or intranets. RESTful services often send and receive JSON content. Some web
platforms and libraries include built-in support for JSON content. This includes recognizing the
application/json media type and providing library support for serializing / deserializing and
receiving / creating messages with this media type.!
For a server program supporting JSON content, the program logic at a high level will,!

• Open a channel to receive messages at. In the case of a RESTful server, this will be an HTTP or
HTTPS port.!

• While running, performing the following steps for each message received,!
• Accept messages received on the channel.!
• Validate the message received. Process the message in the case of a valid message, or return an

error in the case of an invalid message.!
• Preparing a response message based on the processing performed.!
• Optionally, validate the response message.!
• Send the response message.!

• When the program is finished, or directed to terminate, close the channel.!
The example is a program that accepts a message with a pair of digits to add together and returns the
result in a message. If the received message is not valid, an error will be returned instead. The schema
for the request message follows.!

"90

Directory: chapter7, file: addRequest_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Addition request",
 "description":"Numbers to add together", !
 "type":"object",
 "properties":
 {
 “number1":{"type":"integer"},
 "number2":{"type":"integer"}
 },
 "additionalProperties":false,
 "required":["number1", "number2"]
}

The schema for a response message that contains a valid answer follows.!
Directory: chapter7, file addResponse_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Addition response",
 "description":"Answer from addition service", !
 "type":"object",
 "properties":
 {
 "answer":{"type":"integer", "minimum":1 }
 },
 "additionalProperties":false,
 "required":["answer"]
}

Note that the answer property has a minimum value of 1. This allows testing for an invalid response
in the client program by passing the addition service two zeros to add.!
The schema for a response message that contains an error follows.!

Directory: chapter7, file addError_schema.json!
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Addition error",
 "description":"Error message from addition service", !
 "type":"object",
 "properties":
 {
 "error":{"type":"string"}
 },
 "additionalProperties":false,
 "required":["error"]
}

Examples of valid and invalid content are included in the additionClient program). Content for valid
data message (contained in additionClient program).!

{
 "number1":15,
 "number2":24
}

Content for invalid data message (contained in additionClient program). The message is invalid since
the value false is not acceptable for the property number2.!

"91

{
 "number1":15,
 "number2":false
}

To test the client schema validation of a response, a request sending two zero values is sent. This is a
valid input for the addition service, but the result is not valid according to the response schema. Since
the addition service does not do an outbound validation, this invalid content is not discovered until
the client performs the validation step.!

{
 "number1":0,
 "number2":0
}

Since the context for the example is a message exchange, rather than the content being present on a
persistent storage medium, the validation will occur in program logic for the server rather than using
the validate program.!

Javascript / Node.js Implementation
The server and client implemented with Javascript / Node.js.!

Javascript / Node.js Server

In the Javascript / Node.js version of the server, the Tiny Validator is used as the schema validation
processor.!

Directory: chapter7, file: additionService.js!
The leading content, defines two module variables, port, for the port number the server will listen on
and requestSchema, for the schema that is used to validate received messages.!

 1 /**
 2 * Addition service using JSON and JSON Schema.
 3 *
 4 * Starts an HTTP server listening for addition requests.
 5 * Server default port is 8303.
 6 */
 7 var fs = require ("fs");
 8 var http = require ("http");
 9 var tv4 = require ("tv4");
10
11 var port = 8303;
12 var requestSchema = null;
13
14 // if module invoked directly, call main
15 if (require.main === module) {
16 main ();
17 }

The main function calls the command line processor, loads the schema to be used to validate incoming
messages and then starts the server. At the end, it displays a message indicating the port number
being listened on.!

19 /**
20 * Program entry point.
21 */
22 function main () {
23 // process command line for port number
24 processCommand ();
25

"92

26 // Load JSON Schema to validate result against
27 try {
28 var data = fs.readFileSync ("addRequest_schema.json");
29 requestSchema = JSON.parse (data);
30 } catch (e) {
31 console.log ("Error loading request schema: " + e.message);
32 process.exit (1);
33 }
34
35 // listen for messages on specified port
36 var server = http.createServer (handler);
37 server.listen (port);
38 console.log ("Addition service listening on port " + port);
39 }

The handler function is invoked every time an HTTP message is received on the listened to port. When
a message is received, a console message will be displayed. The content type will be checked to verify
it is the JSON content type. If so, the body variable will be populated with the message content
through the request.on (“data”, ...) function. When the request has been fully received, the request.on
(“end”, …) will call the addition function to process the message.!

41 /**
42 * HTTP request handler.
43 * @param request HTTP request object.
44 * @param response HTTP response object.
45 */
46 function handler (request, response) {
47 // when a message is received, display a message
48 console.log ("Request received");
49
50 // verify the content type is for JSON content
51 var contentType = request.headers["content-type"];
52 if (contentType !== "application/json") {
53 console.log ("Invalid content type: " + contentType);
54 } else {
55 // initialize request content with empty string
56 var body = "";
57
58 // when data is received, add it to request content
59 request.on ("data", function onData (data) {
60 body += data;
61 });
62
63 // when all data is received, process the content
64 request.on ("end", function onEnd () {
65 addition (response, body);
66 });
67 }
68 }

The addition function processes the message through the following steps,!
• Parses the body text into a JSON object.!
• Initializes the values to be used in the response message.!
• Creates a fresh validation processor instance, and validates the received message content against

the requestSchema loaded earlier.!
• If the content is valid, the return value is calculated and populated into the result.!
• If the content is not valid, the error content is populated into the result.!

"93

• The response message is created and sent. Note, the result object is converted to a text
representation for the transport.!
70 /**
71 * Process the addition request.
72 * @param response HTTP response object
73 * @param body HTTP body text
74 */
75 function addition (response, body) {
76 console.log ("addition body = " + body);
77 // display received content and parse to JSON object
78 var input = JSON.parse (body);
79
80 var result = null;
81 var contentType = { "Content-type": "application/json" };
82
83 // validate against schema
84 var validator = tv4.freshApi ();
85 if (validator.validate (input, requestSchema) === true) {
86 // calculate result and store in JSON response object
87 result = { "answer": input.number1 + input.number2 };
88 response.writeHead (200, contentType);
89 } else {
90 result = { "error": "invalid request"};
91 response.writeHead (400, contentType);
92 }
93
94 response.write (JSON.stringify (result));
95 response.end ();
96 }

The processCommand function sets the port number if a command line argument has been specified to
set it.!

 98 /**
 99 * Set port from command line arguments.
100 */
101 function processCommand () {
102 var command = process.argv.slice (2);
103 command.forEach (function (arg) {
104 if (arg[0] === "-") {
105 var elements = arg.split ("=");
106 var key = elements[0].toUpperCase ();
107 if ((key === "-P") || (key === "--PORT")) {
108 port = elements[1];
109 }
110 }
111 });
112 }

Node.js, provides the HTTP serving functions in its base library. In the main function, the server.listen
call will initiate the event loop that will keep running until the program is terminated.!

Javascript / Node.js Client

The client program will generates messages towards the server. The messages, described previously,
follow different paths through the client code.!
The source code for the client follows.!

Directory: chapter7, file additionClient.js!
The leading content defines the module variables. The port number, port, the client will send requests
on, and the two schemas to validate the responses – resultSchema and errorSchema.!

"94

 1 /**
 2 * Client to the addition service using JSON and JSON Schema.
 3 *
 4 * HTTP client to make requests. Default port is 8303.
 5 */
 6 var fs = require ("fs");
 7 var http = require ("http");
 8 var tv4 = require ("tv4");
 9
10 var port = 8303;
11 var responseSchema = null;
12 var errorSchema = null;
13
14 // if module invoked directly, call main
15 if (require.main === module) {
16 main ();
17 }

The main function calls the command line processor, allowing the port number option to be used. It
then loads the two schemas, and calls the makeRequests function to generate the requests.!

19 /**
20 * Program entry point.
21 */
22 function main () {
23 // process command line for port number
24 processCommand ();
25
26 // Load JSON Schema to validate result against
27 try {
28 var data = fs.readFileSync ("addResponse_schema.json");
29 responseSchema = JSON.parse (data);
30 data = fs.readFileSync ("addError_schema.json");
31 errorSchema = JSON.parse (data);
32 } catch (e) {
33 console.log ("Error loading result schemas: " + e.message);
34 process.exit (1);
35 }
36
37 makeRequests ();
38 }

The makeRequests function generates the requests shown above, one valid, one with invalid content,
and one that will generate an invalid result. For each request, the JSON content is created and
postRequest is called.!

40 /**
41 * Make requests with valid and invalid content.
42 */
43 function makeRequests () {
44 // make a request with valid content
45 var input = { "number1": 15, "number2": 24 };
46 var validRequest = JSON.stringify (input);
47 postRequest ("Add 2 numbers", validRequest);
48
49 // make a request with invalid content
50 input = { "number1": 15, "number2": true };
51 var invalidRequest = JSON.stringify (input);
52 postRequest ("Add number and boolean", invalidRequest);
53
54 // make a request that will get an invalid result
55 input = { "number1": 0, "number2": 0 };
56 var invalidResult = JSON.stringify (input);
57 postRequest ("Add two zeros", invalidResult);

"95

58 }

The postRequest function performs the following steps,!
• Sets up the request details including headers and addressing (lines 67-77).!
• Creates the callback to receive the message response, in the context of the last parameter on line

80. The callback verifies the content is the correct content type (line 83), accumulates the message
fragments (lines 87-92), and when the message is fully received calls the processResult function
(lines 95-97).!

• The HTTP request is generated and sent (lines 102-103).!
 60 /**
 61 * Post a request to the additionService.
 62 * @param name Request name to display with result
 63 * @param content JSON object to pass to additionService
 64 */
 65 function postRequest (name, content) {
 66 // create request definition
 67 var headers = {
 68 "Content-type": "application/json",
 69 "Content-length": content.length
 70 };
 71 var options = {
 72 "host": "localhost",
 73 "port": port,
 74 "path": "/",
 75 "method": "POST",
 76 "headers": headers
 77 };
 78
 79 // create request, and accept response messages
 80 var request = http.request (options, function (response) {
 81 // verify the content type is for JSON content
 82 var contentType = response.headers["content-type"];
 83 if (contentType !== "application/json") {
 84 console.log ("Invalid content type: " + contentType);
 85 } else {
 86 // initialize response content with empty string
 87 var body = "";
 88
 89 // when data is received, add it to response content
 90 response.on ("data", function onData (data) {
 91 body += data;
 92 });
 93
 94 // when all data is received, process the content
 95 response.on ("end", function onEnd () {
 96 processResult (name, response, body);
 97 });
 98 }
 99 });
100
101 // place the content in the body and send the request
102 request.write (content);
103 request.end ();
104 }

The processResult function displays the result of the request. The first line displayed is the request
information. A fresh instance of the validation processor is created (line 115). The message body
received is parsed (line 118), and based on the status code in the response message, the body is
validated. If the response status was 200 (OK), then the result is validated against the

"96

addResponse_schema.json schema (lines 121-127). If the response status code was 500 (BAD_REQUEST),
then the result is validated against the addError_schema.json schema (lines 128-134).!
If a valid result was received, then the addition result is displayed. Otherwise the error result or the
validation error are displayed.!

106 /**
107 * Process the response message.
108 * @param name Name of the request.
109 * @param response HTTP response object.
110 * @param data HTTP body text.
111 */
112 function processResult (name, response, body) {
113 console.log ("\nResult for request: " + name);
114 var error = null;
115 var v = tv4.freshApi ();
116
117 // parse response content to JSON object
118 var result = JSON.parse (body);
119
120 // if response status was 200 (OK)
121 if (response.statusCode === 200) {
122 // validate against schema, if valid, display answer
123 if (v.validate (result, responseSchema) === true) {
124 console.log (" Result = " + result.answer);
125 } else {
126 error = v.error;
127 }
128 } else if (response.statusCode === 400) {
129 // if response status was an error 400 (BAD REQUEST)
130 if (v.validate (result, errorSchema) === true) {
131 console.log (" Server error: " + result.error);
132 } else {
133 error = v.error;
134 }
135 }
136
137 // if error, print error details
138 if (error !== null) {
139 // display validation error
140 console.log (" Data is not valid in the response");
141 console.log (" Message: " + error.message);
142 console.log (" Data path: " + error.dataPath);
143 console.log (" Schema path: " + error.schemaPath);
144 }
145 }

The processCommand function sets the port number if a command line argument has been specified to
set it.!

147 /**
148 * Set port from command line arguments.
149 */
150 function processCommand () {
151 var command = process.argv.slice (2);
152 command.forEach (function (arg) {
153 if (arg[0] === "-") {
154 var elements = arg.split ("=");
155 var key = elements[0].toUpperCase ();
156 if ((key === "-P") || (key === "--PORT")) {
157 port = elements[1];
158 }
159 }
160 });

"97

161 }

After making the requests and displaying their results, the program will end.!

Python Implementation
The server and client implemented with Python.!

Python Server

In the Python version of the server, the jsonschema library is used as the schema validation processor.!
Directory: chapter7, file: additionService.py!

The leading content defines the imports and the main function. The main function creates the
AdditionService instance, which initiates the server.!

 1 """
 2 Addition service using JSON and JSON Schema.
 3
 4 Starts an HTTP server listening for addition requests.
 5 Server default port is 8303.
 6 """
 7 try:
 8 # Python 3
 9 from http.server import BaseHTTPRequestHandler, HTTPServer
10 except ImportError:
11 # Python 2
12 from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer
13 from argparse import ArgumentParser
14 from json import loads, dumps
15 from jsonschema import Draft4Validator
16 import sys
17
18 def main ():
19 """ Program entry point. """
20 AdditionService ()

The AdditionService class is declared with the init method which sets the port (default or from a
command line parameter), and creates the HTTP server instance.!

22 class AdditionService:
23 """ Start server for addition service. """
24 def __init__ (self):
25 """ Set port and start server """
26 # process command line for port number
27 self.port = 8303
28 self.processCommand ()
29
30 # listen for messages on specified port
31 server = HTTPServer (("localhost", self.port), Handler)
32 print ("Addition service listening on port " + str (self.port))
33 try:
34 server.serve_forever ()
35 except KeyboardInterrupt:
36 server.shutdown ()
37 server.server_close()

The processCommand method checks the command line arguments for a port option.!
39 def processCommand (self):
40 """ Get port from command line arguments. """
41 parser = ArgumentParser ()
42 parser.add_argument ("-p", "--port", type=int, dest="port",
43 action="store", help="Port to make requests on")

"98

44 args = parser.parse_args ()
45 if args.port is not None:
46 self.port = args.port

The Handler class defines the methods that are invoked when messages are received. The only
message being processed in this case is HTTP POST, which is handled by the do_POST method. The
class starts with declaring a class variable, requestSchema (line 51) and the method, loadRequestSchema
(lines 53-67) that loads the schema used to check the request.!

48 class Handler (BaseHTTPRequestHandler):
49 """ HTTP request handler """
50 # class static, only load once
51 requestSchema = None
52
53 def loadRequestSchema (self):
54 """ load request schema from file (once only) """
55 # Load JSON Schema to validate input against
56 try:
57 # read the file and convert to a JSON object
58 data = open ("addRequest_schema.json", "rU").read ()
59 except IOError as e:
60 print ("Error loading input schema: " + e.strerror)
61 sys.exit (1)
62
63 try:
64 Handler.requestSchema = loads (data)
65 except Exception as e:
66 print ("Invalid JSON content in input schema")
67 sys.exit (1)

The do_POST method performs the following tasks,!
• Writes a message to the console indicating a message was received (line 72).!
• If the request schema is not yet loaded, loads it (lines 75-76).!
• Verifies the content is the correct type (lines 78-80).!
• Gets the message body, and parses the JSON content. (lines 82-85).!
• Validates the request against the addRequest_schema.json schema (lines 90-91).!
• If the request is valid, create the response content. (lines 94-98).!
• If an error occurs, the error response content is created (lines 99-102).!
• The response message is created (lines 104-106) with headers and the response content.!
 69 # web processing logic goes here
 70 def do_POST (self):
 71 """ process POST, generate response """
 72 print ("Request received")
 73
 74 # if inputSchema not loaded, load once
 75 if Handler.requestSchema is None:
 76 Handler.loadRequestSchema (self)
 77
 78 contentType = self.headers["content-type"]
 79 if contentType != "application/json":
 80 print ("Invalid content type: " + contentType)
 81 else:
 82 length = int (self.headers["Content-Length"])
 83 data = self.rfile.read (length).decode ("utf8")
 84 print ("addition body = " + data)
 85 dataIn = loads (data)
 86

"99

 87 #validate
 88 try:
 89 print ("start validate")
 90 validator = Draft4Validator (Handler.requestSchema)
 91 validator.validate (dataIn)
 92 print ("validated")
 93
 94 answer = dataIn["number1"] + dataIn["number2"]
 95 print ("answer " + str (answer))
 96 result = dumps ({ "answer": answer })
 97 print ("result " + result)
 98 self.send_response (200)
 99 except Exception as e:
100 # if validation failed, return error
101 result = """{"error": "Invalid request"}"""
102 self.send_response (400)
103
104 self.send_header ("Content-type", "application/json")
105 self.end_headers ()
106 self.wfile.write (result.encode ("utf8"))

The ending lines handle invocation of the main function when the program is initiated.!
108 if __name__ == "__main__":
109 main ()

The program will run until interrupted (using Ctrl-C).!

Python Client

The client program will generate messages towards the server. The messages, described previously,
follow different paths through the client code.!
The source code for the client follows.!

Directory: chapter7, file additionClient.py!
The leading content defines the imports and the main function. The main function creates the
AdditionClient instance, which generates the requests.!

 1 """
 2 Client to the addition service using JSON and JSON Schema.
 3
 4 HTTP client to make requests. Default port is 8303.
 5 """
 6 try:
 7 # Python 3
 8 from urllib.request import urlopen
 9 from urllib.request import Request
10 from urllib.error import HTTPError
11 except ImportError:
12 # Python 2
13 from urllib2 import urlopen
14 from urllib2 import Request
15 from urllib2 import HTTPError
16 from argparse import ArgumentParser
17 from json import loads, dumps
18 from jsonschema import Draft4Validator
19 import sys
20
21 def main ():
22 """ Program entry point. """
23 AdditionClient ()

"100

The AdditionClient is declared with the init method which sets the port (default or from command line
parameter), loads the response and error schemas, and ends by calling the method makeRequests to
generate the HTTP requests.!

25 class AdditionClient:
26 """ Start client for addition service. """
27 def __init__ (self):
28 """ Set port and start client """
29 # process command line for port number
30 self.port = 8303
31 self.processCommand ()
32
33 # Load JSON Schema to validate result against
34 try:
35 # read the file and convert to a JSON object
36 responseSchema = open ("addResponse_schema.json", "rU").read ()
37 errorSchema = open ("addError_schema.json", "rU").read ()
38 except IOError as e:
39 print ("Error loading schema: " + e.strerror)
40 sys.exit (1)
41
42 try:
43 self.responseSchema = loads (responseSchema)
44 self.errorSchema = loads (errorSchema)
45 except ValueError as e:
46 print ("Invalid JSON content in schema")
47 sys.exit (1)
48
49 self.makeRequests ()

The processCommand method checks the command line arguments for a port option.!
51 def processCommand (self):
52 """ Get port from command line arguments. """
53 parser = ArgumentParser ()
54 parser.add_argument ("-p", "--port", type=int, dest="port",
55 action="store", help="Port to make requests on")
56 args = parser.parse_args ()
57 if args.port is not None:
58 self.port = args.port

The makeRequests method constructs the JSON content for each of the requests to be made. For each
request, it calls postRequest.!

60 def makeRequests (self):
61 """ Make requests with valid and invalid content. """
62 # make a request with valid content
63 data = dumps ({ "number1": 15, "number2": 24 })
64 self.postRequest ("Add 2 numbers", data)
65
66 # make a request with invalid content
67 data = dumps ({ "number1": 15, "number2": True })
68 self.postRequest ("Add number and boolean", data)
69
70 # make a request that will get an invalid result
71 data = dumps ({ "number1": 0, "number2": 0 })
72 self.postRequest ("Add two zeros", data)

Making the HTTP request and processing the HTTP response are handled by the postRequest method.!
• A header for the request is displayed to the console (line 81).!
• The request parameters are prepared (lines 82-84).!
• The HTTP request is made (line 87).!

"101

• The HTTP response is received, body content read and parsed. (lines 88-90).!
• On a successful HTTP response, the response is validated against the addResponse_schema.json

schema (lines 92-93).!
• If the response is validated, the addition result is displayed (line 95).!
• If the response is invalid, the invalid result message is displayed (line 97).!

• On an error HTTP response, the response is validated against the addError_schema.json schema (lines
98-107), with the additionService error shown for a validated error response, or a general error if an
invalid error response is received.!
 74 def postRequest (self, name, content):
 75 """
 76 Post a request to the additionService.
 77 Args:
 78 name Request name to display with result
 79 content JSON object to pass to additionService
 80 """
 81 print ("Result for request: " + name)
 82 url = "http://localhost:" + str (self.port) + "/"
 83 dataIn = content.encode ("utf8")
 84 headers = { "Content-type": "application/json" }
 85
 86 try:
 87 req = Request (url, dataIn, headers)
 88 response = urlopen (req)
 89 dataOut = response.read ().decode ("utf8")
 90 result = loads (dataOut)
 91 try:
 92 validator = Draft4Validator (self.responseSchema)
 93 validator.validate (result)
 94
 95 print (" Result = " + str (result["answer"]))
 96 except Exception as e:
 97 print (" Invalid result received\n" + str (e))
 98 except HTTPError as e:
 99 data = e.read ().decode ("utf8")
100 result = loads (data)
101 try:
102 validator = Draft4Validator (self.errorSchema)
103 validator.validate (result)
104
105 print (" Server error: " + str (result["error"]))
106 except:
107 print ("Invalid error received")

The last two lines handle invocation of the main function when the program is initiated.!
109 if __name__ == "__main__":
110 main ()

After making the requests and displaying their results, the program will end.!

Running the Programs

To run the example programs, open two Terminal / Command Prompt windows. Change directory to
the chapter7 directory under the bookujs directory in both windows. The port number option is shown
in both commands, but can be omitted from both if the default port is available (8303).!
In the first window, use one of the following commands.!

node additionService.js -p=8303
python additionService.py -p=8303

"102

The server will start, and a message displays indicating the port that the server is listening to.!
In the second window, use one of the following commands. Note that that port number for the client
must match the port number used in the last command.!

node additionClient.js -p=8303
python additionClient.py -p=8303

When the additionClient programs runs,!
• The additionService program will show the requests being received.!
• The additionClient program will show the results and errors and complete.!

The additionService will continue running until terminated (with Ctrl-C) or the window is closed.!
The additionClient program can be run multiple times without restarting the additionService. The
schema content in the program can be changed to see the results from different schema content (valid
or invalid).!
If you have both Javascript / Node.js and Python installed, you can run the additionClient and
additionService using different runtime platforms if desired.!
Note that using port numbers under 1024 may generate an error if your network configuration limits
use of ports between 0 and 1023.!

Validation Proxy Server
It can be desirable to validate messages before they are received at the end application or service. A
proxy server is a vehicle for inserting an intermediary processor in the message path. Reasons for
using a validation proxy server include,!

• Security considerations. Identifying and rejecting messages that do not contain acceptable content
should be performed as soon as possible, rather than only after the message has reached the
application / service instance. Protocol conformance, client identification and similar checks can
be augmented with JSON content validation.!

• Performance and scalability. Distributing the validation processing to a proxy can provide load
distribution options. These can be static or dynamic, depending on the environment. Appliances
or dedicated accelerators may also be applicable to high volume environments, in addition to
general purpose proxy servers.!

• Use of specialty proxies that provide JSON validation for multiple applications / services. This
can include a schema database, optimization of schema processing, and ease of introducing new
schemas to a managed schema runtime configuration.!

A validation proxy can be implemented in a variety of ways, and can be incorporated as part of a
multipurpose proxy server or as a dedicated function.!

Proxy Server Example

The following proxy server is a very simple example, meant to express the concept only. Running the
example will show the proxy rejecting the request that does not validate, preventing this request from
reaching the server. A more robust implementation can add a header between the proxy and server to
indicate validation has been performed rather than the server being used as is and repeating the
validation step. Note, suitable configuration of the proxy and server networking would also be
needed to ensure the header was only accepted from valid proxies.!
"103

In the addition service example, the client communicated directly with the service instance, each
running in their own process. Rather than create new client and server programs, a proxy server
process will be added that is placed between the client and service.!
Since the three processes will run on the same computer in the description of running the programs,
two port numbers are required (one for the client – proxy communications, and one for the proxy -
service communications). The port argument for the client and service will be used, and matched up
with the inbound and outbound arguments for the proxy.!
The proxy will not modify the messages, thus the client will show the same results whether the proxy
is in the message path or not. This is a typical practice for this type of proxy. As such, the proxy
implementation will be very similar to the service implementation for message handling, however it
won't contain any service logic (in this case, the addition of the numbers).!

Javascript/Node.js Implementation

The source code for the proxy Javascript / Node.js implementation is contained in a single file.!
Directory: chapter7, file: additionProxy.js!

The proxy implementation borrows from both the service and client programs. The leading content
defines inbound and outbound port variables with default values that can be modified by command
line arguments.!

 1 /**
 2 * Proxy for the Addition service, performing validation
 3 * at the proxy..
 4 *
 5 * Starts an HTTP proxy listening for addition requests.
 6 * Inbound default port is 8303, outbound is 8304.
 7 */
 8 var fs = require ("fs");
 9 var http = require ("http");
10 var tv4 = require ("tv4");
11
12 var inboundPort = 8303;
13 var outboundPort = 8304;
14 var requestSchema = null;
15
16 // if module invoked directly, call main
17 if (require.main === module) {
18 main ();
19 }

The main function loads the request validation schema and sets up the inbound listening port for the
proxy.!

21 /**
22 * Program entry point.
23 */
24 function main () {
25 // process command line for port number
26 processCommand ();
27
28 // Load JSON Schema to validate result against
29 try {
30 var data = fs.readFileSync ("addRequest_schema.json");
31 requestSchema = JSON.parse (data);
32 } catch (e) {
33 console.log ("Error loading request schema: " + e.message);
34 process.exit (1);

"104

35 }
36
37 // listen for messages on specified port
38 var server = http.createServer (handler);
39 server.listen (inboundPort);
40 console.log ("Addition service proxy");
41 console.log (" Proxy for port " + outboundPort);
42 console.log (" Listening on port " + inboundPort);
43 }

The handler function processes HTTP requests received, and for each JSON request received, calls the
proxy function (line 69).!

45 /**
46 * HTTP request handler
47 * @param response HTTP response object
48 * @param body HTTP body text
49 */
50 function handler (request, response) {
51 // when a message is received, display a message
52 console.log ("Request received");
53
54 // verify the content type is for JSON content
55 var contentType = request.headers["content-type"];
56 if (contentType !== "application/json") {
57 console.log ("Invalid content type: " + contentType);
58 } else {
59 // initialize request content with empty string
60 var body = "";
61
62 // when data is received, add it to request content
63 request.on ("data", function onData (data) {
64 body += data;
65 });
66
67 // when all data is received, process the content
68 request.on ("end", function onEnd () {
69 proxy (response, body);
70 });
71 }
72 }

The proxy function parses the received content (line 82), validates the content (lines 88-89), and if
valid, forwards the request to the service (line 91). If not valid, an error is generated back to the client
(lines 93-96).!

74 /**
75 * Validate and proxy the request.
76 * @param response HTTP response object
77 * @param body HTTP body text
78 */
79 function proxy (response, body) {
80 console.log ("addition body = " + body);
81 // display received content and parse to JSON object
82 var input = JSON.parse (body);
83
84 var result = null;
85 var contentType = { "Content-type": "application/json" };
86
87 // validate against schema
88 var validator = tv4.freshApi ();
89 if (validator.validate (input, requestSchema) === true) {
90 // forward request to additionService
91 forwardRequest (body, response);

"105

92 } else {
93 result = { "error": "invalid request" };
94 response.writeHead (400, contentType);
95 response.write (JSON.stringify (result));
96 response.end ();
97 }
98 }

The forwardRequest function creates the request to the service (line 120 and lines 145-146). Handling of
the response (lines 121-141) includes verifying the content type (lines 123-124) and accepting the
content (lines 126-132). When the response is completely received, it will be forwarded to the client
(lines 134-140).!

100 /**
101 * Forward the request to the additionService.
102 * @param content JSON object to pass to additionService
103 * @param proxyResponse Proxy response object
104 */
105 function forwardRequest (content, proxyResponse) {
106 // create request definition
107 var headers = {
108 "Content-type": "application/json",
109 "Content-length": content.length
110 };
111 var options = {
112 "host": "localhost",
113 "port": outboundPort,
114 "path": "/",
115 "method": "POST",
116 "headers": headers
117 };
118
119 // create request, and accept response messages
120 var request = http.request (options, function (response) {
121 // verify the content type is for JSON content
122 var contentType = response.headers["content-type"];
123 if (contentType !== "application/json") {
124 console.log ("Invalid content type: " + contentType);
125 } else {
126 // initialize response content with empty string
127 var body = “";
128
129 // when data is received, add it to response content
130 response.on ("data", function onData (data) {
131 body += data;
132 });
133
134 // when all data is received, process the content
135 response.on ("end", function onEnd () {
136 proxyResponse.writeHead (response.statusCode,
137 { "Content-type": "application/json" });
138 proxyResponse.write (body);
139 proxyResponse.end ();
140 });
141 }
142 });
143
144 // place the content in the body and send the request
145 request.write (content);
146 request.end ();
147 }

"106

The last function, processCommand, parses the command line arguments and sets the inbound and
outbound port variables if found.!

149 /**
150 * Set ports from command line arguments.
151 */
152 function processCommand () {
153 var command = process.argv.slice (2);
154 command.forEach (function (arg) {
155 if (arg[0] === "-") {
156 var elements = arg.split ("=");
157 var key = elements[0].toUpperCase ();
158 if ((key === "-I") || (key === "--INBOUND")) {
159 inboundPort = elements[1];
160 } else if ((key === "-I") || (key === "--OUTBOUND")) {
161 outboundPort = elements[1];
162 }
163 }
164 });
165 }

Python Implementation

The source code for the proxy Python implementation is contained in a single file.!
Directory: chapter7, file: additionProxy.py!

The leading content initiates the program, creating an instance of AdditionProxy.!
 1 """
 2 Proxy for the Addition service, performing validation
 3 at the proxy..
 4
 5 Starts an HTTP proxy listening for addition requests.
 6 Inbound default port is 8303, outbound is 8304.
 7 """
 8 try:
 9 # Python 3
10 from http.server import BaseHTTPRequestHandler, HTTPServer
11 from urllib.request import urlopen
12 from urllib.request import Request
13 from urllib.error import HTTPError
14 except ImportError:
15 # Python 2
16 from urllib2 import urlopen
17 from urllib2 import Request
18 from urllib2 import HTTPError
19 from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer
20 from argparse import ArgumentParser
21 from json import loads
22 from jsonschema import Draft4Validator
23 import sys
24
25 def main ():
26 """ Program entry point. """
27 AdditionProxy ()

The init method sets the defaults and calls the method to process the command line arguments. Next,
the host tuple is created for the inbound port (line 39). Line 40 creates an instance of
ProxyHTTPServer, which is a subclass of HTTPServer. The new class stores the outbound port, making
it accessible to Handler instances. Lines 44-48 start the server listener and shutdown the server on a
keyboard interrupt (Ctrl-C).!

29 class AdditionProxy:

"107

30 """ Start server for addition service. """
31 def __init__ (self):
32 """ Set port and start server """
33 # process command line for port number
34 self.inbound = 8303
35 self.outbound = 8304
36 self.processCommand ()
37
38 # listen for messages on specified port
39 host = ("localhost", self.inbound)
40 server = ProxyHTTPServer (host, self.outbound, Handler)
41 print ("Addition service proxy")
42 print (" Proxy for port " + str (self.outbound))
43 print (" Listening on port " + str (self.inbound))
44 try:
45 server.serve_forever ()
46 except KeyboardInterrupt:
47 server.shutdown ()
48 server.server_close()

The processCommand method collects the inbound and outbound port options.!
50 def processCommand (self):
51 """ Get ports from command line arguments. """
52 parser = ArgumentParser ()
53 parser.add_argument ("-i", "--inbound", type=int, dest="inbound",
54 action="store", help="Inbound port")
55 parser.add_argument ("-o", "--outbound", type=int, dest="outbound",
56 action="store", help="Outbound port")
57 args = parser.parse_args ()
58 if args.inbound is not None:
59 self.inbound = args.inbound
60 if args.outbound is not None:
61 self.outbound = args.outbound

The ProxyHTTPServer class is defined. The definition includes HTTPServer and object to allow the
super syntax across Python 2 and 3. The init method calls the superclass init and stores the outbound
port, so it can be accessed by Handler instances.!

63 class ProxyHTTPServer (HTTPServer, object):
64 """
65 HTTPServer subclass to hold outbound port
66 """
67 def __init__ (self, host, outbound, handler):
68 super (ProxyHTTPServer, self).__init__ (host, handler)
69 self.outbound = outbound

A signification portion of the Handler implementation is the same as the AdditionService, and will not
be repeated here. Lines 113-125 contain the proxy specific content.!

• The message validation (lines 113-114) is performed. If the validation does not pass, then the
AdditionService is not called, instead the error is returned to the client from the proxy.!

• The differences are in lines 120-125, where the service logic (addition calculation) is replaced by
the request code from the proxy to the service. The response from the service, or errors, are passed
through to the client.!
113 validator = Draft4Validator (Handler.requestSchema)
114 validator.validate (dataIn)
115
116 # make request on outbound port
117 url = "http://localhost:" + str (self.server.outbound) + "/"
118 headers = { "Content-type": "application/json" }
119 try:

"108

120 print ("Make request to " + url)
121 req = Request (url, data.encode ('utf8'), headers)
122 response = urlopen (req)
123 dataOut = response.read ().decode ("utf8")
124 print ("Dataout " + dataOut)
125 self.send_response (200)

Running the Program with the Proxy

For this example, three Terminal / Command Prompt windows will be used. Change directory to the
chapter7 directory under the bookujs directory in all windows. While the default port number for the
client can be used, the server needs to have its port number specified (to match the outbound port on
the proxy).!
By default, the client and proxy inbound will use port 8303. The proxy outbound uses the default port
8304. The server default is 8303, which must be overridden to match the proxy outbound port.!
In the first window, use one of the following commands to start the addition service.!

node additionService.js -p=8304
python additionService.py -p=8304

The server will start, and a message displays indicating the port that the server is listening to.!
In the second window, use one of the following commands to start the validation proxy server. Note
that the port number for the client must match the inbound port number used in the next command
and the outbound port number must match the port from the last command.!

node additionProxy.js -i=8303 -o=8304
python additionProxy.py -i=8303 -o=8304

In the third window, use one of the following commands to start the client. Note that that port
number for the client must match the inbound port number used in the last command.!

node additionClient.js -p=8303
python additionClient.py -p=8303

When the additionClient program runs,!
• The additionService program will show the requests being received.!
• The additionProxy program will show requests being received.!
• The additionClient program will show the results and errors and complete.!

The additionService and additionProxy will continue running until terminated (with Ctrl-C) or the
window is closed.!
The additionClient program can be run multiple times without restarting the additionService or
additionProxy. The JSON content in the client program can be changed to see the results from different
content (valid or invalid).!
If you have both Javascript / Node.js and Python installed, you can run the additionClient, additionProxy,
and additionService using any combination of runtime platforms if desired.  

"109

8. Command Line Validation Tool

Throughout chapter 3, the validate program is used to initiate validation processing of JSON content
against schemas defined using JSON Schema. As a command line tool, is can also be used as part of
scripts, enabling the tool to be used for many purposes.!
This chapter will cover the source code for both the Javascript / Node.js and Python versions of the
validate program. It will also provide some examples for using the program in scripts, and as library
functions in other programs.!
The validate program consists of the following modules,!

• main.js / main.py. The command line entry point for the program, it processes the command line
arguments and initiates the processing.!

• validate.js / validate.py. Loads the JSON content and schema content (from files, database and
HTTP sources). It initiates the validation processor using the Tiny Validator (Javascript) or
jsonschema (Python) libraries.!

It uses the safeFile module for file interactions. The Javascript / Node.js version also uses the format
module. These are covered in chapter 9.!
The Javascript/Node.js and Python programs provide the equivalent function, however their
implementations differ. The structure of the Javascript / Node.js implementation reflects the
asynchronous programming model of Node.js and the schema loading approach for using Tiny
Validator. The Python implementation utilizes a subclassing approach for handling schema loading,
and uses the internal HTTP schema fetch function from the jsonschema library. For readers interested
in considering different ways of implementing validation processors, reading through both
implementations may be useful.!

Entry Point: main.js / main.py
The Javascript/Node.js and Python implementations have similar implementations.!

• Imports are done for dependent modules.!
• Programming constructs for main processing are included, supporting the program being called

from a command line or script.!
• The main program logic processes the command line, verifies the JSDB file exists (if being used),

invokes the validation process, prints the processing result, and exits with the success / fail exit
code.!

• A function, processCommand, to process the command line. In the Javascript/Node.js
implementation, this does the processing itself. In the Python version, the base library functions
from argparse are used.!

The source code for each follows.!
Directory: chapter8/nodejs/jsonvalidate, file: main.js!
 1 /**
 2 * Validate JSON file against a JSON Schema
 3 *
 4 * Usage: jsonvalidate [options] jsonFile schemaFile [referenceFile ...]

"110

 5 *
 6 * The result will be indicated with the process.exit (n) where,
 7 * 0 indicates successful validation
 8 * 1 indicates validation failed
 9 */
 10 var validate = require ("./validate").validate;
 11 var fs = require ("fs");
 12
 13 // if module invoked directly, call the module function
 14 if (require.main === module) {
 15 main ();
 16 }
 17
 18 /**
 19 * Validate JSON per command line arguments.
 20 */
 21 function main () {
 22 // process command line arguments
 23 var command = processCommand (process.argv.slice (2));
 24
 25 if (command.jsdb !== null) {
 26 if (fs.exists (command.jsdb) === false) {
 27 console.log ("JSDB file specified does not exist");
 28 process.exit (1);
 29 }
 30 }
 31
 32 // validate content with schema
 33 validate (command.json, command.schema, command.ref, command.jsdb,
 34 function (code, data, message) {
 35 // display message and exit with result code
 36 console.log (message);
 37 process.exit (code);
 38 });
 39 }
 40
 41 /**
 42 * Process the command line.
 43 * @param {string[]} command Command line arguments.
 44 * @returns {object} Object {json, schema, ref, jsdb}.
 45 */
 46 function processCommand (command) {
 47 var showHelp = false; // Flag: help requested?
 48 var validCommand = true; // Flag: Valid command?
 49
 50 // result of command line argument processing
 51 var result = {
 52 "json" : null,
 53 "schema" : null,
 54 "ref" : [],
 55 "jsdb": null
 56 };
 57
 58 // skip arg0 (program name) and arg1 (script name)
 59 command.forEach (function (arg) {
 60 // if argument is an option (leads with -)
 61 if (arg[0] === "-") {
 62 var elements = arg.split ("=");
 63 var key = elements[0].toUpperCase ();
 64 if ((key === "-J") || (key === "--JSDB")) {
 65 result.jsdb = elements[1];
 66 } else if ((key === "-H") || (key === "--HELP")) {
 67 showHelp = true;
 68 }

"111

 69 } else {
 70 // assign positional arguments
 71 if (result.json === null) {
 72 result.json = arg;
 73 } else if (result.schema === null) {
 74 result.schema = arg;
 75 } else {
 76 // accept variable number of ref arguments
 77 result.ref.push (arg);
 78 }
 79 }
 80 });
 81
 82 // if both files not specified, command is invalid
 83 if ((result.json === null) || (result.schema === null)) {
 84 validCommand = false;
 85 }
 86
 87 // if any errors found or help requested, display usage message
 88 if ((showHelp === true) || (validCommand === false)) {
 89 console.log ("Usage: validate [options] json schema [refs ...]");
 90 console.log (" json JSON file to be validated");
 91 console.log (" schema JSON Schema file to validate against");
 92 console.log (" refs JSON Schema referenced element files");
 93 console.log ();
 94 console.log (" options:");
 95 console.log (" -j or --jsdb JSDB file");
 96 console.log (" -h or --help Display this message");
 97
 98 // exit with error code for invalid command or zero if help shown
 99 process.exit ((showHelp === true) ? 0 : 1);
100 }
101
102 return (result);
103 }
104
105 // exports
106 exports.main = main;

Of note in the Javascript/Node.js implementation is the asynchronous call to validate on line 33. The last
parameter is the callback function that will be called when the validation processing is complete,
which has its implementation on lines 35-37. This asynchronous pattern enables the validation
processor to implement schema fetch functions using asynchronous patterns, which is the
implementation supported in the Node.js runtime libraries.!

Directory: chapter8/python/jsonvalidate, file: main.py!
 1 """
 2 Validate JSON file against a JSON Schema
 3
 4 Usage: jsonvalidate [-options] jsonFile schemaFile [refFiles ...]
 5 Options:
 6 -j JSDB file containing ref schemas
 7
 8 The result will be indicated with the sys.exit (n) where,
 9 0 indicates successful validation
10 1 indicates validation failed
11 """
12 from argparse import ArgumentParser
13 from os.path import isfile
14 import sys
15 from jsonvalidate.validate import validate
16

"112

17 def main ():
18 """ Validate JSON per command line arguments. """
19 # process command line arguments
20 jsonFile, schemaFile, refFiles, jsdbFile = processCommand ()
21
22 if jsdbFile is not None:
23 if not isfile (jsdbFile):
24 print ("JSDB file specified does not exist")
25 sys.exit (1)
26
27 # validate content with schema
28 code, data, message = validate (jsonFile, schemaFile, refFiles, jsdbFile)
29 # display message and exit with result code
30 print (message)
31 sys.exit (code)
32
33 def processCommand ():
34 """ Process the command provided. """
35 # call option processor
36 parser = ArgumentParser (prog="validate")
37 parser.add_argument ("jsonFile",
38 help="JSON file to be validated”)
39 parser.add_argument ("schemaFile",
40 help="JSON Schema file to jsonvalidate against")
41 parser.add_argument ("-j", "--jsdb", dest="jsdbFile", action="store",
42 help="JSDB file containing ref schemas")
43 parser.add_argument ("refFiles", nargs="*",
44 help="JSON Schema files with referenced elements")
45 args = parser.parse_args ()
46
47 # return command line parse results
48 if "jsdbFile" not in args:
49 args["jsdbFile"] = None
50 return args.jsonFile, args.schemaFile, args.refFiles, args.jsdbFile
51
52 if __name__ == "__main__":
53 main ()

The Python implementation of the validate call (line 28) uses a synchronous call and a multiple return
value syntax for the results. The use of a synchronous call is consistent with the implementation of
the jsonschema and Python libraries used.!

Validation Processing: validate.js / validate.py
The Javascript/Node.js and Python implementations perform the same function, but their
implementations are very different. This shows the flexibility available to implementers choosing
how to best fit each runtime platform.!

Javascript / Node.js Version

The Javascript/Node.js validation process has three distinct steps – receiving the instructions,
assembling and organizing the content, and running the validation. In the second of these steps, it
retrieves the data and schemas, determines whether all the required content is present, and invokes
the validation processor.!
The Tiny Validator library provides a flexible API for interacting with the schema processor, including
interactions at intermediate data stages. This allows the validation processor to be used against
partially complete schema models to determine what is missing, which can subsequently be
populated before running the validation.!
"113

Directory: chapter8/nodejs/jsonvalidate, file: validate.js!
The leading content defines the error constants and messages and the module variable (jsdbData) to
hold the JSDB content for referenced schema content.!

 1 /**
 2 * JSON Schema validation preparation.
 3 *
 4 * Load data and schema content
 5 * - resolve local file references
 6 * - resolve database references (jsdb)
 7 * - resolve remote HTTP references
 8 */
 9 var http = require ("http");
10 var tv4 = require ("tv4");
11 var safeFile = require ("ujs-safefile").safeFile;
12 var format = require ("ujs-format").format;
13
14 // message numbers and formats
15 var VALID = 0;
16 var INVALID_JSON = 200;
17 var MISSING_ID = 201;
18 var FETCH_ERROR = 300;
19 var VALIDATION_ERROR = 301;
20
21 var MSG_READ_ERROR = "Error reading {0}: {1}";
22 var MSG_VALID_JSON = "JSON content in file {0} is valid";
23 var MSG_INVALID_JSON = "Invalid JSON in file: {0}. Error: {1}";
24 var MSG_MISSING_ID = "Missing Id in Reference Schema {0}";
25 var MSG_FETCH_ERROR = "Error fetching {0}: {1}”;
26
27 // JSDB data
28 var jsdbData = null;

The validate function will be shown in sections for clarity. The first section includes the comment,
function declaration, and variable initialization.!

30 /**
31 * Process inputs for validation, including fetching external schema
32 * content. If all inputs are valid, call validation processor
33 * (in runValidate).
34 * @param {string} dataFile File with JSON content to validate.
35 * @param {string} schemaFile File containing JSON Schema.
36 * @param {string[]} refFiles Array of files for schemas referenced.
37 * @param {string} jsdbFile File containing JSDB content.
38 * @callback {callback} callback with object containing
39 * {integer} code: VALID or error constant.
40 * {string} data: data read for VALID result.
41 * {string} message: result text.
42 */
43 function validate (dataFile, schemaFile, refFiles, jsdbFile, callback) {
44 var data = null;
45 var schema = null;
46 var refs = [];
47 var result = null;
48 var message = null;

Load the data and schema content.!
50 // read data file
51 result = readJsonFile (dataFile);
52 if (result.code !== VALID) {
53 message = format (MSG_READ_ERROR, dataFile, result.message);
54 return callback (result.code, null, message);
55 }

"114

56 data = result.data;
57
58 // read schema file
59 result = readJsonFile (schemaFile);
60 if (result.code !== VALID) {
61 message = format (MSG_READ_ERROR, schemaFile, result.message);
62 return callback (result.code, null, message);
63 }
64 schema = result.data;

If reference schemas are specified, the array of reference schemas will be read. Each is verified to
include a top level id property, otherwise the validator will not be able to associate it with a $ref URI.!

66 // read set of reference files
67 if (refFiles !== null) {
68 for (var ctr1 = 0; ctr1 < refFiles.length; ctr1 ++) {
69 var file = refFiles[ctr1];
70 result = readJsonFile (file);
71 if (result.code !== VALID) {
72 message = format (MSG_READ_ERROR, file, result.message);
73 return callback (result.code, null, message);
74 }
75
76 var ref = result.data;
77 if (ref.id === undefined) {
78 message = format (MSG_MISSING_ID, file);
79 return callback (MISSING_ID, null, message);
80 }
81 refs.push ({ "uri":ref.id, "schema":ref, "error":null });
82 }
83 }

If a JSDB source is being used, it will be read into the jsdbData variable.!
85 // read JSDB file
86 if (jsdbFile !== null) {
87 result = readJsonFile (jsdbFile);
88 if (result.code !== VALID) {
89 message = format (MSG_READ_ERROR, jsdbFile, result.message);
90 return callback (result.code, null, message);
91 }
92 jsdbData = result.data;
93 }

The next section creates a fresh validation processor, and populates the schema content (top level
schema and all reference schemas).!

 95 // reset validator and add loaded schemas
 96 var validator = tv4.freshApi ();
 97 validator.addSchema ("", schema);
 98 for (var ctr2 = 0; ctr2 < refs.length; ctr2 ++) {
 99 validator.addSchema (refs[ctr2].uri, refs[ctr2].schema);
100 }

The last section allow reference schema content to be loaded from other URI sources, http and jsdb, as
specified in $ref URIs.!
The fetchSchemaContent function can be called recursively. Each recursion into fetchSchemaContent will
retrieve an additional layer of schema content. When all schema content has been received, the
callback function provided to fetchSchemaContent will be called. Line 104 is the initial call to
fetchSchemaContent, and its callback will be invoked when all layers of schema content have been
resolved.!

"115

If the fetch processing was successful, the validation step will be invoked (lines 105-106). If any errors
occurred, the error message will be generated and returned through the callback (lines 107-117).!

102 // resolve refs from other locations (http, jsdb). Call validation
103 // when schema content is complete.
104 fetchSchemaContent (validator, refs, function (successful) {
105 if (successful) {
106 runValidate (dataFile, data, schema, refs, callback);
107 } else {
108 // return URIs in error
109 var m3 = "";
110 for (var ctr3 = 0; ctr3 < refs.length; ctr3 ++) {
111 var ref = refs[ctr3];
112 if (ref.error !== null) {
113 m3 += format (MSG_FETCH_ERROR, ref.uri, ref.error) + "\n";
114 }
115 }
116 return callback (FETCH_ERROR, null, m3);
117 }
118 });
119 }

The readJsonFile function reads the content of the file specified and returns its data content after
verifying that the content is valid JSON.!

121 /**
122 * Read file and verify it contains JSON content.
123 * @param {string} file Path/name of file to read.
124 * @returns {object} Result { code, data, message }
125 */
126 function readJsonFile (file) {
127 var data = null;
128 var code = null;
129 var message = null;
130
131 try {
132 var content = safeFile.readFileSync (file);
133 try {
134 data = JSON.parse (content);
135 code = VALID;
136 } catch (e1) {
137 code = INVALID_JSON;
138 message = format (MSG_INVALID_JSON, file, e1.message);
139 }
140 } catch (e2) {
141 code = e2.code;
142 message = e2.message;
143 }
144
145 return ({code:code, data:data, message:message});
146 }

The fetchSchemaContent function is a recursive function that loads schema content one layer at a time.
As each layer is loaded, the function checks to see if any new references were introduced, and if so, it
processes through the new layer. Once there are no outstanding references, the function completes
and sends back its results to the calling function through a callback. Given the length of the function,
the source code will be shown in sections.!
The fetchSchemaContent function determines whether any URIs are not yet resolved, and if so, select
the retrieval mechanism to load the content. Processing of http / https and jsdb URIs is supported.
First is the comment and function declaration.!

"116

The first step, getting the list of missing URIs, is preformed by calling the getMissingUris function in
the Tiny Validator, and if none are missing, calling the completion callback. Since no content is
missing, the callback indicates success with the argument true.!

148 /**
149 * Fetch schema content for the current depth. Can be called recursively
150 * to create the fully populated schema.
151 * @param validator Validation processor instance
152 * @param refs Array containing full set of referenced schemas.
153 * @param callback Carries result of schema processing (true, false).
154 */
155 function fetchSchemaContent (validator, refs, callback) {
156 // if no missing URIs then end fetch
157 var missingUris = validator.getMissingUris ();
158 if ((missingUris === null) || (missingUris.length === 0)) {
159 return callback (true);
160 }

The next section assembles the list of outstanding references by URI type (jsdb: or http:/https:).!
162 // assemble list of missing URIs by resource type
163 var jsdbList = [];
164 var httpList = [];
165 for (var ctr1 = 0; ctr1 < missingUris.length; ctr1 ++) {
166 // get protocol from URI (portion up to the first colon)
167 var uri = missingUris[ctr1];
168 var protocol = uri.substring (0, uri.indexOf (":"));
169
170 // assign to appropriate resource list
171 if (protocol === "jsdb") {
172 jsdbList.push (uri);
173 } else if ((protocol === "http") || (protocol === "https")) {
174 httpList.push (uri);
175 }
176 }

Fetching JSDB resource content uses the synchronous jsdbFetch function. After each fetch, the fetch
result is added to the refs list, and on successful fetches the schema is added to the schema processor.
After all fetches, if any errors have occurred (lines 189-192), then the callback is called with a false
result.!

178 // fetch schemas from JSDB resource, on any error end fetch
179 var jsdbOkay = true;
180 for (var ctr2 = 0; ctr2 < jsdbList.length; ctr2 ++) {
181 var ref = jsdbFetch (jsdbList[ctr2]);
182 refs.push (ref);
183 if (ref.schema !== null) {
184 validator.addSchema (ref.uri, ref.schema);
185 } else {
186 jsdbOkay = false;
187 }
188 }
189 // if any errors, end processing
190 if (jsdbOkay === false) {
191 return callback (false);
192 }

Fetching HTTP content (lines 194-238). If there are no HTTP URIs for this layer, then the schema
fetching is complete for this layer, and fetchSchemaContent is recursively called to initiate processing of
the next layer. The callback function passed will propagate the result received to the calling function.!

194 // If no HTTP requests, continue with next depth processing
195 if (httpList.length === 0) {
196 fetchSchemaContent (validator, refs, function (result) {

"117

197 // propagate result back through caller chain
198 return callback (result);
199 });

If there are HTTP fetches to be resolved, HTTP URI fetch processing (lines 200-238) uses an
asynchronous technique, allowing the HTTP requests to be executed in parallel. !
Lines 202-203 initialize the results, and newRefs variables. The results variable is used to determine
when all fetches are complete by comparing the number of responses received to the number of
requests made. The newRefs variable holds a list of result objects, collecting the status from each
request made.!
Lines 204-232 contain the handler callback. The handler is the callback function that will be invoked by
the httpFetch function when the HTTP response is received. For each response, line 205 adds the
content/error to the list of response results (newRefs). Next, it checks to see whether all requests have
been completed (results counter versus requests list length).!
When all requests have responses, all successful requests will have their schemas added to the refs list
and the schema processor (lines 209-220).!
Lines 222-230 complete the callback function. If all requests were completed successfully, the
fetchSchemaContent function will be called recursively to initiate processing of the next layer (lines
223-227). When called, the callback function passed will propagate the result received to the calling
function. However, if any errors occurred (lines 228-230), the callback will be called with the false
value.!
The last section of the fetchSchemaContent function (lines 234-237) contain the calls to the httpFetch
function for each HTTP URI to retrieve a schema from. The handler function defined above is passed
as the callback to be called by the httpFetch function after receiving each response.!

200 } else {
201 // process HTTP fetches (async)
202 var results = 0;
203 var newRefs = [];
204 var handler = function (uri, schema, error) {
205 newRefs.push ({ "uri":uri, "schema":schema, "error":error });
206
207 // when all HTTP requests complete, process all collected
208 results ++;
209 if (results === httpList.length) {
210 // add all success/fail records to refs
211 var httpOkay = true;
212 for (var ctr3 = 0; ctr3 < newRefs.length; ctr3 ++) {
213 if (newRefs[ctr3].schema !== null) {
214 var newRef = newRefs[ctr3];
215 refs.push (newRef);
216 validator.addSchema (newRef.uri, newRef.schema);
217 } else {
218 httpOkay = false;
219 }
220 }
221
222 // if no errors, process next depth, else end
223 if (httpOkay) {
224 fetchSchemaContent (validator, refs, function (result) {
225 // propagate result back through caller chain
226 return callback (result);
227 });
228 } else {
229 return callback (false);

"118

230 }
231 }
232 };
233
234 // initiate processing for the set of fetch requests (async)
235 for (var ctr4 = 0; ctr4 < httpList.length; ctr4 ++) {
236 httpFetch (httpList[ctr4], handler);
237 }
238 }
239 }

The runValidate function creates a fresh validation processor, populates it with the $ref schema content
collected (lines 255-257) and initiates the validation processor with the data to be validated (line 260).
Lines 262-272 contain the message construction and callbacks for successful and failure results.!

241 /**
242 * Call the validation processor
243 * @param {string} file Name of file being validated.
244 * @param {object} data JSON to validate.
245 * @param {object} schema JSON Schema to validate against.
246 * @param {object[]) refs JSON referenced schemas.
247 * @param {callback} callback with object containing
248 * {integer} code: VALID or error constant.
249 * {string} data: data read for VALID result.
250 * {string} message: result text.
251 */
252 function runValidate (file, data, schema, refs, callback) {
253 // start with fresh instance and add referenced schemas
254 var validator = tv4.freshApi ();
255 for (var ctr2 = 0; ctr2 < refs.length; ctr2 ++) {
256 validator.addSchema (refs[ctr2].uri, refs[ctr2].schema);
257 }
258
259 // validate data against schema specified
260 var result = validator.validate (data, schema);
261
262 // if validation successful, return data and valid message
263 if (result === true) {
264 var m2 = format (MSG_VALID_JSON, file);
265 callback (VALID, data, m2);
266 } else {
267 // if validation failed, display error information
268 var message = "Invalid: " + validator.error.message;
269 message += "\nJSON Schema element: " + validator.error.schemaPath;
270 message += "\nJSON Content path: " + validator.error.dataPath;
271 callback (VALIDATION_ERROR, null, message);
272 }
273 }

The jsdbFetch function searches the loaded JSDB schemas to find a matching URI. If found the schema
is returned. If not found, an error is returned.!

275 /**
276 * Fetch schema content from schema database (URI jsdb:).
277 * @param {string} uri URI to resolve.
278 * @returns {object} Schema object (uri, schema, error).
279 */
280 function jsdbFetch (uri) {
281 if (jsdbData !== null) {
282 // if URI found in database, return schema for the URI
283 for (var ctr = 0; ctr < jsdbData.length; ctr ++) {
284 if (jsdbData[ctr].id === uri) {
285 return ({ "uri":uri, "schema":jsdbData[ctr], "error":null });
286 }

"119

287 }
288 }
289
290 // no match found, return error result
291 var message = "No schema found for URI: " + uri;
292 return ({ "uri":uri, "schema":null, "error":message });
293 }

The httpFetch function processes an asynchronous request / response interaction. After processing a
successful response (lines 303-311), the callback is called with the schema content. If an error occurs,
the callback is called with an error (lines 315-317).!

295 /**
296 * Fetch the content from a URI using HTTP
297 * @param {string} uri URI of the content.
298 * @param {callback} callback (uri, data, null) or (uri, null, error).
299 */
300 function httpFetch (uri, callback) {
301 // make request to server, with callback function to collect response
302 var request = http.get (uri, function (response) {
303 var data = "";
304 // collect data received from server
305 response.on ("data", function onData (d) {
306 data += d;
307 });
308 // when all data received, send schema to callback
309 response.on ("end", function onEnd () {
310 callback (uri, data, null);
311 });
312 });
313
314 // on error, send error to callback
315 request.on ("error", function (e) {
316 callback (uri, null, e);
317 });
318 }

The last section contains the exports for the error codes.!
320 // exports
321 exports.VALID = VALID;
322 exports.INVALID_JSON = INVALID_JSON;
323 exports.MISSING_ID = MISSING_ID;
324 exports.FETCH_ERROR = FETCH_ERROR;
325 exports.VALIDATION_ERROR = VALIDATION_ERROR;
326 exports.validate = validate;

With many possible reference schema to retrieve, and the mix of synchronous and asynchronous
techniques shown, the utility of using an array of objects that contains key, data, and error properties
to collect results is shown. This mechanism permits retrieved data and errors to be managed in a
uniform manner without requiring complex flow control interactions with the caller or across
different fetch activities.!

Python Version

Extending the Python validation processing of jsonschema is done by subclassing part of the validation
processor, incorporating additional function into the execution path of the validation processor itself.
In contrast, the Javascript / Node.js approach extended the function of the validation processor by
populating the data model of the validation processor using the Tiny Validator APIs and then invoking
the validation processor.!

"120

Directory: chapter8/python/jsonvalidate, file: validate.py!
The leading section defines the message constants.!

 1 """
 2 JSON Schema validation preparation.
 3 - Load data and schema content
 4 - resolve local file references
 5 - resolve database references (jsdb)
 6 """
 7 from safefile import readFile, SafeFileError
 8 from jsonschema import Draft4Validator, RefResolver
 9 import json
10
11 # message numbers and formats
12 VALID = 0
13 INVALID_JSON = 200
14 MISSING_ID = 201
15 FETCH_ERROR = 300
16 VALIDATION_ERROR = 301
17
18 MSG_READ_ERROR = "Error reading {0}: {1}"
19 MSG_INVALID_JSON = "Invalid JSON in file: {0}. Error: {1}"
20 MSG_MISSING_ID = "Missing Id in Reference Schema {0}"
21 MSG_FETCH_ERROR = "Error fetching {0}: {1}"
22 MSG_VALID_JSON = "JSON content in file {0} is valid"

The next section is the JsdbResolver class definition, which extends the RefResolver class from the
jsonschema library. This class will be called when schema content needs to be loaded by the schema
processor. The init method calls the superclass constructor and stores the JSDB content in the class
instance.!

24 class JsdbResolver (RefResolver):
25 """
26 Extends jsonschema resolver with the following:
27 - addSchema to add statically defined schemas
28 - support for jsdb: URI for database schemas
29 """
30 def __init__ (self, baseURI, referer, jsdb):
31 """ Initialize jsdb and call superclass init """
32 super (JsdbResolver, self).__init__ (baseURI, referer)
33
34 # Store JSDB content in memory
35 self.jsdb = jsdb

The addSchema method adds a schema to the set of stored schemas.!
37 def add_schema (self, uri, schema):
38 """ Add a schema to the stored list of schemas """
39 self.store[uri] = schema

The resolve_jsdb method searches the stored schemas for one with a matching URI. Returns the
schema found, or None if no match found.!

41 def resolve_jsdb (self, uri):
42 """ Fetch a schema from the JSDB database. """
43 result = None
44 # if database available
45 if self.jsdb is not None:
46 # find schema matching id in database and add schema
47 for schema in self.jsdb:
48 if schema["id"] == uri:
49 result = schema
50 break
51 return result

"121

The resolve_remote method is called when the schema processor needs to retrieve a schema using a
URI. By overriding this method, the resolver for the jsdb: URI is added. The custom resolve logic for
jsdb: URIs is executed here. For other URIs, the superclass resolve_remote method is called.!

53 def resolve_remote (self, uri):
54 """
55 Overrides superclass resolve_remote, processing "jsdb:" URI,
56 otherwise calls superclass to fetch the schema.
57 """
58 if uri[0:5] == "jsdb:":
59 document = self.resolve_jsdb (uri)
60
61 # duplicate caching logic from superclass
62 if self.cache_remote:
63 self.store[uri] = document
64 return document
65 else:
66 return RefResolver.resolve_remote (self, uri)

Next is the validate function which is described in sections. The first is the declaration and function
comment.!

68 def validate (dataFile, schemaFile, refFiles, jsdbFile):
69 """
70 Perform validation of JSON content with the JSON Schema.
71
72 Args:
73 dataFile (str): File with JSON content to validate.
74 schemaFilename (str): File containing JSON Schema.
75 refFiles (list of str): List of files for schemas referenced.
76 jsdbFile (str): File containing JSDB schemas referenced.
77 Returns:
78 code (int): VALID or error constant.
79 data (str): data read for VALID result.
80 message (str): message text.
81 """

The second section reads the data and schema files.!
82 # read data file, returning error if not valid
83 code, data, message = _readJsonFile (dataFile)
84 if code != VALID:
85 return code, None, MSG_READ_ERROR.format (jsdbFile, message)
86
87 # read schema file, returning error if not valid
88 code, schema, message = _readJsonFile (schemaFile)
89 if code != VALID:
90 return code, None, MSG_READ_ERROR.format (jsdbFile, message)

The third section loads the JSDB content (if specified) and then creates the resolver using the
JsdbResolver class definition.!

 92 # load JSDB file, or set to empty if not specified
 93 if jsdbFile is None:
 94 jsdb = {}
 95 else:
 96 code, jsdb, message = _readJsonFile (jsdbFile)
 97 if code != VALID:
 98 return code, None, MSG_READ_ERROR.format (jsdbFile, message)
 99
100 # create custom resolver
101 resolver = JsdbResolver ("", schema, jsdb)

The fourth section reads the reference files. The schemas from the reference files are added to the
custom resolver.!

"122

103 # read reference schema files, returning error if any not valid
104 if refFiles is not None:
105 for refFile in refFiles:
106 code, ref, message = _readJsonFile (refFile)
107 if code != VALID:
108 return code, None, MSG_READ_ERROR.format (jsdbFile, message)
109 if "id" not in ref:
110 return MISSING_ID, None, MSG_MISSING_ID.format (refFile)
111 resolver.add_schema (ref["id"], ref)

The last section creates the validation processor instance with the custom resolver, and then calls it to
process the JSON data. The success or failure message will be returned.!

113 # run validation, returning data if successful
114 try:
115 # create validator with custom resolver, call it
116 validator = Draft4Validator (schema, resolver=resolver)
117 validator.validate (data)
118 return VALID, data, MSG_VALID_JSON.format (dataFile)
119 except Exception as e:
120 # if validation failed, return error information
121 return VALIDATION_ERROR, None, e

The schema processor will interact with the schema content managed by this program logic through
the custom resolver when it calls the resolve_remote method.!
The last method, readJsonFile, reads the content of the specified file and verifies that the content is
valid JSON.!

123 def _readJsonFile (file):
124 """
125 Read file and verify it contains JSON content
126 Args:
127 file (str): File to read
128 Returns:
129 code (int): VALID or error constant.
130 data (str): data read for VALID result.
131 message (str): message text.
132 """
133 try:
134 data = readFile (file)
135 try:
136 jsonData = json.loads (data)
137 return VALID, jsonData, None
138 except ValueError as e:
139 return INVALID_JSON, None, MSG_INVALID_JSON.format (file, e)
140 except SafeFileError as e:
141 return e.code, None, e.message

Using the Tools in Shells and Scripts
Command line tools can be used for interactive shell commands or in scripts. These uses can improve
productivity and support automation of processes from build to quality assurance testing to field
support.!
A good example of a useful shell command use is a syntax scan of a set of files. Open a Terminal /
Command Prompt and switch to the chapter2 directory.!
On Linux using the bash shell, use the command.!

for file in *.json ; do jsonsyntax $file ; done

On Windows, use the command.!
for %f in (*.json) do jsonsyntax %f

"123

The result of running the command will be a list of executions of the jsonsyntax tool against each of
the files matching the filter *.json with the results for each. This provides a quick way to verify that all
the files contain valid JSON content.!
Beyond the command line interactions, scripting can work with results from program executions to
provide automation. For example, printing a successful message if all files are valid JSON, or showing
errors only for those that contain invalid JSON content.!
The result of the jsonsyntax and validate execution are returned as the exit code for the program. 0
(zero) is returned for a successful execution, and 1 (one) is returned for an unsuccessful execution.
This allows jsonsyntax and validate to be used in a conditional expression within a script. For
example, in a Linux shell script.!

Directory: chapter8, file: syntaxCheck.sh!
#!/bin/sh
valid="TRUE"
for f in ../chapter2/*.json
do
 ./syntax.sh $f >nul
 if [$? -eq 1]
 then
 echo File: $f invalid
 valid="FALSE"
 else
 echo File: $f valid
 fi
done !
if [$valid -eq "TRUE"]
then
 echo All files valid.
 exit 0
else
 exit 1
fi

The equivalent in a Windows batch file follows.!
Directory: chapter8, file: syntaxCheck.cmd!
@echo off
set valid="TRUE"
for %%f in (..\chapter2*.json) do (
 call syntax %%f >nul
 if errorlevel 1 (
 echo File: %%f invalid
 set valid="FALSE"
) else (
 echo File: %%f valid
)
)
if %valid%=="TRUE" (
 echo All files valid.
)

In both cases, the following steps occur in the script processing.!
• A variable (valid) is set to track whether all files checked pass the syntax check.!
• A for loop executes once for each file with the extension json in the chapter2 directory.!

• If the file contains valid JSON content, the valid message is displayed.!

"124

• If the file does not contain valid JSON content, the invalid message is displayed and the overall
flag is set to false.!

• After checking all files, a final message is displayed if all files checked were valid.!
Similar scripts can be used in build processes. As content and schema files are changed,!

• Each can be verified to have correct JSON syntax!
• Each content file can be validated against its schema to ensure no content errors have been

introduced.!
Scripts can also be used to perform validation on any content that is introduced to the environment.
This can be useful for validating content received from external sources, or content generated by
programs.  

"125

9. Designing Software to Use JSON Files

There are three design areas for the use of JSON file use in software programs.!
• Validating content to be used by the software program.!
• Managing the representation of the data in its persistent and in-memory states.!
• Handling error conditions, including errors related to persistence.!

The first item applies to all uses of JSON (message exchange or persistent storage). The second and
third items relate to persistent storage considerations.!

Validation in Programs
When JSON content is read, the content should be validated before proceeding with its use in the
program. The validation can be performed at different levels, suitable for the program needs.!

• The content may be validated only for syntax correctness. For programs dealing with generic
JSON content, or using serialization/deserialization with no external access to the content, this
may be sufficient. Using the built in JSON parser available with many language runtime libraries
will suffice, as shown in the syntax checking examples in chapter 2.!

• Validation of the structure of the JSON content, but not its content. This ensures that the content
received meets the expected structure, but leaves interpretation of the content to the program.
Programs that accept arbitrary content, such as a web page or content types that have variable
data elements, can ensure that the required content is correct, and arbitrary content is correctly
delineated. This can include the use of JSON Schema for the portions of the content that are
required.!

• Full content validation of the JSON content, providing the validation processor with a well
defined schema to use.!

Even in the last case, there may be some validation of the content that is program specific or rely on
other content. Thus JSON Schema may be augmented with program logic to complete the full
validation for some content. For example, the JSON content may contain an employee serial number
as a property within an object, and its content may be constrained to be a five digit integer. The JSON
Schema validation can verify that a presented employee serial number of 12345 is a valid
representation, but the program may further validate the value by doing a query to an employee
database to verify that 12345 is an active employee.!

In Memory State of JSON Content
Javascript and Python examples are shown throughout the book.!

• Using Javascript, as may be expected, the in-memory representation of the JSON content and its
manipulation are consistent with Javascript objects, arrays, and data types. Serialization and
deserialization is very uniform between the representations.!

• Using Python, the representation is very recognizable, using the dictionary representation for the
content. The interfaces for serialization and deserialization are also easy to use.!

"126

Other programming languages have similar conversions as seen with Python. Data types and
structures to handle object/array elements will vary, but typically the mapping is readily
recognizable. If the data represented in the JSON content is interacted with throughout a program
(rather than just load at start and save at end), then using a class (or equivalent) to provide an
interface to access / manipulate the data is often useful.!

• Load and save methods/functions always have access to the current state.!
• Data changes can ensure consistency of the state where applicable (e.g., changing an identifier in

one element can be cascaded to its affiliated elements).!
The design patterns for many programs will be similar to interactions with a database, where the
processes that interact with the data will perform their interactions through a model object or
function library. In these cases, the JSON content and its persistent storage are participants in typical
database patterns (whether a database, file, or other resource, is ultimately the persistent store).!
Validation of in-memory representations of JSON content can be performed at any time. For
programs that support import of data from other sources, or user entry of content, validation of
content as part of updating the in-memory representation is often useful for recognizing and
resolving errors at the point they are introduced. For programs that support Undo functions, this can
be helpful in always providing a valid representation for each Undo checkpoint.!

Persistent State Choices
When considering general data management, including data files and databases, the JSON file and
JSON Schema discussions have some independent considerations.!

• JSON Schema can apply to JSON content stored in any medium. It can be a native capability of the
persistence function, or the program can apply the schema to content sent to or received from the
persistence function.!

• The location of the schema logic is not fixed. If JSON content moves from file storage (with
program logic applying validation) to a database that supports schema validation as a native
feature, the schema logic location moves, but the schema definition remains the same.!

In the JSON files examples to this point, the discussion has focused on configuration files. However,
especially with design topics like auto-save, the applicability of these capabilities to general data files
can be envisioned.!
However, just like using a full blown database is overkill for most configuration file scenarios, JSON
files have places where they are suitable for use and where they are not. The following criteria tend to
exclude the use of files as the persistent storage choice.!

• Programs that require physical media storage updates on every data change. These programs also
are likely to be changing a small portion of the content with each change, requiring efficient write
operations to individual file segments.!

• Programs with large data sets that use indexes to efficiently find and store data. Data storage
libraries and databases provide the additional function required for index and search.!

• Data sizes that exceed memory available will require options that do not rely on basic in-memory
representations of the data.!

"127

These considerations leave a lot of space for data management for smaller data sets that do not have
transactional requirements. Some criteria that bring JSON files into consideration are,!

• Human readable, and editable, using a text editor (this is usually a positive, but can be a negative
if you prefer not having easy edit access outside the program).!

• Name-value pair structure is durable, extensible, and not prone to positional errors of data
formats like comma separated value.!

• Relatively easy to translate records (into arrays) and fields (into object properties) from current
data sources.!

• Validation using JSON Schema, providing the benefits of structured data without requiring use of
a particular persistent storage choice.!

Many of these criteria are shared with the use of XML. Whether JSON or XML is applicable will likely
incorporate criteria from the domain the program is to be used in. For those domains that have
existing schema and document content that already use one or the other, the value of switching is less
than for domains that are adopting new.!

Program Interaction Models for Persistent Storage
Each program has its own requirements for how, and when, persistent storage is used. These
requirements will inform the implementation of the persistent storage function.!

Read at Start, Write Before Exit

Fairly common in utility programs and programs that self manage their own data resources. On
program load, the JSON content is read into memory. During execution, the in-memory
representation may be updated. When the program has completed processing related to the data, the
persistent state is updated. If no relevant changes to the data were made, the save step can be
skipped.!

User / Program Initiated Read and Write

The previous example had one well defined read point and one well defined write point, at the
initiation and termination of the program respectively. This also provides a predictable context for
recovery procedures, since it has a repeatable relationship between the data file state and the program
execution. This example separates the read / write operations from the program lifecycle, allowing
thee operations to be initiated by events (user or program initiated), and possibly more than once
during the program execution.!
In the program design, the context of a backup file is no longer assumed to be associated strictly with
the program execution itself, since more than one version of the file can be produced by a single
execution. Recovery will therefore be to the last save event, which may or may not be the same as the
last program execution.!
As a variation, the program could choose to load a default file as part of its startup processing.
However, this would be considered a program initiated read event in this example, rather than the
explicit function described in the previous example.!
When the write operations are initiated, the program can determine the suitability of the current state
of the data for writing. If the state is not suitable, an appropriate action can be initiated by the

"128

program to ensure the persistent state written will always be acceptable. This step can include
validation of the content against a schema, data consistency checks, and other logic. With this
verification capability available, the writes can be to the permanent persistent state resources.!

Periodic Auto-Save

For programs that run a long time, or where many changes occur between updates to the permanent
persistent resource, creating interim checkpoints can provide a useful function to speed recovery in
the case of failure.!
Auto-save provides a snapshot capability that allows data changes during the course of a program
execution to be captured, so that in the event of failure the data changes are not lost up to the point of
the last auto-save. However, since these changes have not been completed to the point where the user
or program is ready to initiate a write, the changes cannot be made to the permanent persistent
resource.!
Also, given the periodic nature of the save activity (time, actions, or other metric), the snapshot data
may or may not be in a consistent state when it is written. For example, in the address examples
(chapters 3 and 4), a new address may be created that specifies a country that has not yet been
defined in the common postal information data. The auto-save may save this interim state, so the
address is not lost, but until the country is defined, the auto-save data is not in a consistent state.!
One of the design challenges for auto-save is how to implement the recovery process, and this in turn
will provide insight into what programs auto-save is suitable for, and which it is not. Some
considerations,!

• Auto-save can be triggered on a timer, a number of changes, or when a particular action is taken
(e.g.,the program presents a preferences dialog and the user completes their interaction with the
dialog).!

• Auto-save typically writes its content to an auto-save specific file, not the permanent file, which
must be accounted for in the recovery design. While these are considered temporary resources,
these files usually have similar robustness requirements for recovery purposes that permanent
resources do.!

• Auto-save is often transparent to the end user, so it may not be clear at what point the auto-save
content relates to the point that the software failed. This issue will vary in importance and
obviousness from program to program, but should be considered in the recovery process,
especially those that involve user choices.!

From these considerations, the use of auto-save has some very distinct differences from the first
example. Auto-save is often more suited to interactive programs, where the recovery process can
include user choices and interactions.!

Persistent Storage of JSON Content
The persistent storage options for JSON content include standalone resources, such as a file in a file
system, or in managed resources, such as an entry in a database. How the persistent data is interacted
with varies from program to program.!

Simple File Storage

"129

The simple scenario: read the JSON content when the program starts. Program logic or user
interaction with the program allows changes to the in-memory representation of the content. Write
the updated content to the file during one of the last processing steps of the program.!
This can be suitable for programs that can automatically recreate their data, or for which the data is
trivial. Any time the data is changed during the running of the program (or even every time if change
tracking is not part of the program), the file will be overwritten.!
The next step up, when some basic recovery protection is desired, is to keep a backup of the original
file rather than overwriting it. This addresses two weaknesses in the original approach – loss of data
should a failure occur during the write process, and saving unwanted changes that are realized only
after the program has ended and the changes already saved. The recovery process in this scenario is
manual – the user / administrator can delete the new file and rename the backup file to the original
name. The process for this approach would be,!

• Delete current backup if it exists (e.g.,employee.json.bak)!
• Rename the original to the backup name (e.g.,employee.json > employee.json.bak)!
• Save the new content to the original name (e.g.,employee.json)!

This basic scenario can be extended to similar scenarios, such as allowing the user to direct the save
action rather than just saving at the end of processing.!
For auto-save scenarios however, the approach of replacing the original file or backup file is
insufficient. Since the auto-save activity may happen when the data is inconsistent, and/or the user
may not be able to determine what changes were still outstanding should the program be restarted
with the auto-saved data. For an auto-save scenario, the auto-save version of the data should be
stored in an independent file (e.g.,employee.json.autosave), which should be cleaned up when the
program ends or the original/backup files are updated.!

Databases

When a program is using a database manager as its persistent storage choice, it is likely to have some
of the following characteristics,!

• Data items are sets, and individual items within the set are interacted with independently. For
example, a set of employees, where individual employee contact information is updated when an
employee moves.!

• The program can be long running, in the case of a multi-user program it may be always running,
so changes in the data will occur many times during the execution of the program.!

• Multiple programs may interact with the same data items, requiring control procedures to be in
place to prevent inconsistencies being introduced by conflicting interactions.!

• Quantity of data requires use of indexes, storage optimizations, et cetera to meet the expected
performance goals of the programs using it.!

• Automation of backup, recovery, maintenance, and other administrative functions is desired.!
When these characteristics are desired, a number of data management options are available. These
include relational databases (using generic object storage options) or more specialized databases like
MongoDB that support JSON as a native data type.!

Robust File Storage

"130

In between the two prior scenarios are many programs that have more robust requirements for robust
data management, but do not have functional needs leading to selection of a database. Configuration
files are a good example, in many cases they have robust auto-recovery requirements, while also
requiring the easy manipulation afforded by file system based persistence.!
The next topic will address the issues and options to address different aspects of persistence,
providing choices and guidance on selecting and implementing robust data management in
programs.!

Recovery Enabled File Storage
If a program is able to automatically recover from faults, it will be considered more robust than a
program that requires user/administrator intervention when any fault occurs. Most programs will
not be able to recover from 100% of faults on their own - hardware limitations, cost of redundancy,
and the need for additional decision-making criteria (e.g.,when the program has an error that has
corrupted part of the data) all may limit getting to 100% automation. However, there are areas where
the file management aspects can be made very robust, and contribute to getting programs closer to
100% automation in recovery processing.!
There are classes of faults to consider. These include,!

• Was the failure of the program itself due to an error in the software?!
• Was the failure of the program due to an error caused by the hardware it is dependent on

(e.g.,processor failure, network failure, storage failure)? Was the fault temporary, or does the
program need to be relocated, or the hardware replaced?!

• Timing of the failure. Did the the fault occurs at a point where data consistency could be an issue
(e.g.,part way through writing data)?!

• Impact of the failure. Is the data impacted user / administrator created/edited data or data
managed by the program itself? Is the impacted data able to be created again from other sources?
Does the user / administrator need to be involved in a recovery procedure to verify any part of
the process or make decisions on recovery choices?!

To provide robust software, to minimize the impact of these potential faults, design choices and
implementation examples show how JSON files can be incorporated.!

Failures, What the Recovery Process Needs to Know

When a program fails due to a software failure (the program terminates unexpectedly or is
terminated by an external process / person), then the normal shutdown procedures cannot be
assumed to have completed correctly.!
When a hardware failure causes the software to fail completely (e.g., processor failure), then normal
shutdown procedures will not have been processed, and even exceptional processing (such as an
operating system signal) will not have been processed. Other hardware errors can result in blocking
the software from completing a task, but allowing the software to recognize the fault and provide
some mitigation. For example, a network failure that prevents access to the file system can provide an
error message to the console / program user interface, even if the program does not have an alternate
location to place the data to write, and other program shutdown procedures can be performed.!

"131

The key consideration is that the automated part of the recovery process can only rely on what is
available after the fact in order to guide its processing. For example, it may not be able to determine
whether a data update was partially completed or not, only that the file exists or doesn't exist that
was to hold the data. Thus, the recovery processing needs to,!

• Be able to determine that the permanent files related to the program were in a stable state.!
• Be able to determine whether any temporary files related to the program were in a stable state.!
• Know what automated steps to take for each of the files based on their state (stable or not) when

the recovery process is initiated.!
• Communicate whether the recovery steps are able to be performed through its automation, or

whether additional intervention is required. Note, additional intervention could be additional
automation (such as retrieval of a backup file from an automated backup facility or running a data
consistency function), user action (such as inspection of data), or administrative action (such as
providing a version of the data from a backup).!

Some design choices are informed by these needs.!
• For permanent files, their stable state must be able to be determined by examination of the file

system, not by reliance on state information in the running program. If the program is to be
installed in an environment where delayed write processing is possible, where an independent
recovery process is not guaranteed to provide recovery coverage for writes in progress, then a
mechanism for recognizing stable files is required.!

• For temporary files, design choices include,!
• Removing temporary files as part of recovery processing, effectively deleting the data.!
• Placing the temporary files into a location for the user / administrator to access, leaving any

further use of the files to the user / administrator.!
• Providing protection for the temporary files in the same manner as permanent files, and

processing temporary files that can be verified as stable as part of recovery processing. For those
that cannot be verified as stable, they can be handled in either of the manners described in the
preceding choices.!

• Simple processes occur only at the time of writing data (e.g.,create backup version). However,
supporting recovery processing involves logic at the start of the program, for reads and writes,
and potentially status interfaces that can be interacted with from within the program or with
external processes. These multiple points of interaction may drive design choices related to
modularization of logic, interface design, and access/security choices if external interactions are
to be supported.!

An example implementing a set of these design choices follows. From this example, many derivatives
are possible, reflecting differing functional and non-functional requirements, environments, and
amount of automation desired. The key concept is that JSON content can be utilized across a wide
variety of programs and environments, schema definitions can be managed in the same manner, and
incorporating robust handling in programs is feasible.!

"132

Library: safeFile
In the validation program in chapter 8, the safeFile module was referenced, being used the file reading
function provided. In that example, the basic read function was used, rather than the recoverable
interface, since the program required only read function and was not part of a larger set of programs
that included read/write functionality.!
In the upcoming example, the recoverable interface will be used, showing how a common module
can be used to provide auto-recovery capabilities. To start, the safeFile module is presented, providing
the context for the capabilities covered in its implementation.!

• Synchronous functions are defined. This improves readability of the code, and for smaller files in
local file systems is an appropriate design consideration.!

• Both recovery enabled, and non-recovery enabled, read/write functions are provided. Programs
may not require recovery automation for all files, but having a consistent interface is useful. This
also allows subsequent versions of a program to switch between the two interface choices without
changing libraries.!

The design choices for the auto-recovery features in the module are,!
• On write, the module will create a stable state in the file system that allows determining whether

the write process completed or not by using a two stage write process. The first stage will write
the data to an ephemeral file (extension .eph). After the file is closed, the second stage will rename
the file to its ready state (extension .rdy). This will allow inspection of the file system state to
determine whether the write process completed (existence of .rdy file), and the recovery process to
recognize an incomplete processing of the 2 stages (existence of .eph file).!

• The write processing will start with the creation of the .eph file to ensure the data is saved at the
earliest time, without disrupting the previously stored data.!

• The write steps for managing the transition of the existing backups and introduction of the new
content to the permanent representations will be consistent with the auto recovery steps to
perform the same activity.!

• An interface will be provided that allows a program to ask for the status of the persistent data,
indicating a ready status, auto-recovery possible status, or an intervention required status.!

• An interface will be provided to initiate recovery processing.!
• The read function will initiate auto-recovery if it is required.!

Implementation descriptions for the Javascript / Node.js and Python versions follow.!

Implementation of safeFile for Javascript / Node.js

index.js. As part of the packaging, the Javascript / Node.js version includes an index.js file that provides
an exports directory for the library, since exports are available from multiple files.!

Directory: chapter9/nodejs/safefile, file: index.js!
module.exports.SafeFileError = require ("./SafeFileError").SafeFileError;
module.exports.safeFile = require ("./safeFile");

SafeFileError.js. A custom error definition is defined for the library, which can be presented through
exception handling or in callbacks.!

"133

The SafeFileError declaration and implementation stores a message code and message. The values of
the message code are provided through a set of constants (lines 18-26) that are attached to the
SafeFileError prototype. Lines 28-32 define the message strings that are used with the format utility to
construct the messages.!

 1 /**
 2 * Error for safeFile errors/exceptions
 3 */
 4
 5 /**
 6 * Create SafeFileError instance with code and message.
 7 * @param {integer} code Message identifier.
 8 * @param [string] message Message text.
 9 */
10 function SafeFileError (code, message) {
11 this.name = "SafeFileError";
12 this.code = code;
13 this.message = message;
14 }
15
16 // constants
17 var p = SafeFileError.prototype;
18 p.NO_ERROR = 0;
19 p.INVALID_NAME = 100;
20 p.DOES_NOT_EXIST = 101;
21 p.IS_NOT_A_FILE = 102;
22 p.READ_ERROR = 103;
23 p.WRITE_ERROR = 104;
24 p.SAFE_NORMAL = 0;
25 p.SAFE_RECOVERABLE = 110;
26 p.SAFE_INTERVENE = 111;
27
28 p.MSG_INVALID_NAME = "File name missing or not valid";
29 p.MSG_IS_NOT_A_FILE = "File {0} is not a file";
30 p.MSG_DOES_NOT_EXIST = "File {0} does not exist";
31 p.MSG_READ_ERROR = "Error reading file {0}: {1}";
32 p.MSG_WRITE_ERROR = "Error writing file {0}: {1}";
33
34 //exports
35 exports.SafeFileError = SafeFileError;

safeFile.js. The implementation of safeFile has six exported functions providing access to normal
read/write operations, auto-recoverable read/write operations, and recovery utility operations. The
leading content includes the list of exported functions.!

Directory: chapter9/node/safefile, file: safeFile.js!
 1 /**
 2 * File processing functions for managed files.
 3 *
 4 * readFileSync - Read a file
 5 * writeFileSync - Write a file
 6 * safeGetState - Get the recovery state for a file
 7 * safeRecover - Initiate recovery for a file
 8 * safeReadFileSync - Read with recovery support
 9 * safeWriteFileSync - Write with recovery support
10 */
11 // import format function and Node.js file system module
12 var format = require ("ujs-format").format;
13 var fs = require ("fs");
14 var SafeFileError = require ("./SafeFileError").SafeFileError;
15 var cc = SafeFileError.prototype;

"134

The readFileSync function implements a synchronous file read, throwing appropriate exceptions if any
parameters are invalid or an error occurs. If no errors occur, the data from the file is returned.!

17 /**
18 * Read file.
19 * @param {String} fileName File to read.
20 * @returns {String} Data read from file.
21 * @throws SafeFileError
22 */
23 function readFileSync (fileName, options) {
24 verifyFileName (fileName);
25
26 var info = getFileInfo (fileName);
27 if (info.exists === false) {
28 var message1 = format (cc.MSG_DOES_NOT_EXIST, fileName);
29 throw new SafeFileError (cc.DOES_NOT_EXIST, message1);
30 }
31 if (info.isFile === false) {
32 var message2 = format (cc.MSG_IS_NOT_A_FILE, fileName);
33 throw new SafeFileError (cc.IS_NOT_A_FILE, message2);
34 }
35
36 // read data file
37 var data = null;
38 try {
39 data = fs.readFileSync (fileName, options);
40 } catch (e) {
41 var message3 = format (cc.MSG_READ_ERROR, fileName, e.message);
42 throw new SafeFileError (cc.READ_ERROR, message3);
43 }
44
45 // return data
46 return (data);
47 }

The writeFileSync function synchronously writes the provided content to the specified file name. If no
data is provided, the file will be written as an empty file. If the file already exists, it is replaced.!

49 /**
50 * Write data to a file.
51 * @param {String} fileName Name of file (path optional).
52 * @param {String} data Data to write.
53 * @throws SafeFileError
54 */
55 function writeFileSync (fileName, data, options) {
56 verifyFileName (fileName);
57
58 var info = getFileInfo (fileName);
59 if ((info.exists === true) && (info.isFile === false)) {
60 var message1 = format (cc.MSG_IS_NOT_A_FILE, fileName);
61 throw new SafeFileError (cc.IS_NOT_A_FILE, message1);
62 }
63
64 // if content undefined or null, set data to empty string
65 if ((data === undefined) || (data === null)) {
66 data = "";
67 }
68
69 // write file content, throwing exception on error occurring
70 try {
71 fs.writeFileSync (fileName, data, options);
72 } catch (e) {
73 var message2 = format (cc.MSG_WRITE_ERROR, e.message);
74 throw new SafeFileError (cc.WRITE_ERROR, message2);

"135

75 }
76 }

The readFileSync and writeFileSync functions do not implement auto-recovery features. They are used
for files that do not require the auto-recovery capabilities. However, their error messages are
consistent with the safeReadFileSync and safeWriteFileSync functions, enabling easy transition between
the interfaces.!
The safeGetState function determines the persistent state of the file and its recoverable elements. The
returned status indicates whether the state is stable, auto-recoverable, or not auto-recoverable.!

78 /**
79 * Get status of the file.
80 * @param {String} file Name of base file.
81 * @returns {Integer} SAFE_NORMAL, SAFE_AUTO_RECOVERABLE, SAFE_INTERVENE,
82 * INVALID_NAME, IS_NOT_A_FILE, or DOES_NOT_EXIST
83 */
84 function safeGetState (fileName) {
85 if ((fileName === undefined) || (fileName === null)) {
86 return (cc.INVALID_NAME);
87 }
88 // if fileName exists, verify it is a file
89 var info = getFileInfo (fileName);
90 if ((info.exists) && (info.isFile === false)) {
91 return (cc.IS_NOT_A_FILE);
92 }
93
94 var state = getState (fileName);
95 return (state.status);
96 }

The safeRecover function provides an interface that allows the auto-recovery processing to be initiated.!
 98 /**
 99 * Initiate auto-recovery processing.
100 * @param {String} fileName Name of base file
101 * @throws SafeFileError
102 */
103 function safeRecover (fileName) {
104 verifyFileName (fileName);
105
106 // if fileName exists, verify it is a file
107 var info = getFileInfo (fileName);
108 if ((info.exists) && (info.isFile === false)) {
109 var message1 = format (cc.MSG_IS_NOT_A_FILE, fileName);
110 throw new SafeFileError (cc.IS_NOT_A_FILE, message1);
111 }
112
113 // get state, if doesn't exist throw error
114 var state = getState (fileName);
115 if (state.status === cc.DOES_NOT_EXIST) {
116 var message2 = format (cc.MSG_DOES_NOT_EXIST, fileName);
117 throw new SafeFileError (cc.DOES_NOT_EXIST, message2);
118 }
119
120 performRecovery (state, true);
121 }

The safeReadFileSync function reads the contents from a file. However, it first determines whether
auto-recovery processing is required, and if so, it initiates the recovery processing.!

123 /**
124 * Read a file, performing recovery processing if necessary.
125 * @param {String} file File to read.
126 * @returns {String} Data read from file.

"136

127 * @throws SafeFileError
128 */
129 function safeReadFileSync (fileName, options) {
130 verifyFileName (fileName);
131
132 // if fileName exists, verify it is a file
133 var info = getFileInfo (fileName);
134 if ((info.exists) && (info.isFile === false)) {
135 var message = format (cc.MSG_IS_NOT_A_FILE, fileName);
136 throw new SafeFileError (cc.IS_NOT_A_FILE, message);
137 }
138
139 // get state, if auto-recovery required, perform recovery
140 var state = getState (fileName);
141 if (state.status === cc.SAFE_RECOVERABLE) {
142 performRecovery (state, true);
143 }
144
145 // perform read on file
146 return (readFileSync (fileName, options));
147 }

The safeWriteFileSync function creates the recovery enabled elements as it saves the content. It
determines the recovery state, performs clean up and recovery preparation steps, writes the content,
and completes recovery preparation.!

149 /**
150 * Write data to a file using a recoverable process.
151 * @param {String} fileName Name of file (path optional).
152 * @param {String} data Data to write.
153 * @throws SafeFileError
154 */
155 function safeWriteFileSync (fileName, data, options) {
156 verifyFileName (fileName);
157
158 // if fileName exists, verify it is a file
159 var info = getFileInfo (fileName);
160 if ((info.exists) && (info.isFile === false)) {
161 var message = format (cc.MSG_IS_NOT_A_FILE, fileName);
162 throw new SafeFileError (cc.IS_NOT_A_FILE, message);
163 }
164
165 // get current file system state, and auto-recover if necessary
166 var state = getState (fileName);
167
168 // store data in well defined ephemeral file to allow manual recovery
169 // If file already exists, remove it (failed prior recovery).
170 if (state.ephemeral.exists) {
171 fs.unlinkSync (state.ephemeral.name);
172 }
173
174 writeFileSync (state.ephemeral.name, data, options);
175 state.ephemeral.exists = true;
176
177 // if ready state file already exists, recover prior state
178 if (state.ready.exists) {
179 performRecovery (state, false);
180 }
181
182 fs.renameSync (state.ephemeral.name, state.ready.name);
183
184 // refresh state and process recovery to set file system state
185 state = getState (fileName);
186 performRecovery (state, true);

"137

187 }

Non-exported support functions provide common processing. The verifyFileName function (lines
189-201) throws an error if the file name provided to any function is invalid.!

189 /**
190 * Verify fileName parameter.
191 * @param {String} fileName Name of file to verify.
192 * @throws SafeFileError
193 */
194 function verifyFileName (fileName)
195 {
196 // if fileName undefined or null, throw exception
197 if ((fileName === undefined) || (fileName === null)) {
198 var message1 = format (cc.MSG_INVALID_NAME);
199 throw new SafeFileError (cc.INVALID_NAME, message1);
200 }
201 }

The getState function examines the persistent state of the recovery environment to determine what
state (stable, auto-recoverable, not auto-recoverable) it is in.!

203 /**
204 * Get state for file system entities.
205 * @param {String} file Base file name.
206 * @returns {Object} State object.
207 */
208 function getState (file) {
209 // collect state for all possible data and recovery files
210 var state = {};
211 state.ephemeral = getFileInfo (file + ".eph");
212 state.ready = getFileInfo (file + ".rdy");
213 state.base = getFileInfo (file);
214 state.backup = getFileInfo (file + ".bak");
215 state.tertiary = getFileInfo (file + ".bk2");
216
217 if (state.ephemeral.exists) {
218 state.status = cc.SAFE_INTERVENE;
219 } else if ((state.ready.exists) || (state.tertiary.exists)) {
220 state.status = cc.SAFE_RECOVERABLE;
221 } else if (state.base.exists) {
222 state.status = cc.SAFE_NORMAL;
223 } else {
224 if (state.backup.exists) {
225 state.status = cc.SAFE_RECOVERABLE;
226 } else {
227 state.status = cc.DOES_NOT_EXIST;
228 }
229 }
230
231 return (state);
232 }

The getFileInfo function provides the meta information for a file name. This information is used to
determine validity of requests (e.g.,not allowing existing directories to be processed as files).!

234 /**
235 * Get existence, file/directory info for a file.
236 * @param {String} fileName Name of file to get info for
237 * @returns {Object}
238 */
239 function getFileInfo (fileName) {
240 var result = {};
241 result.name = fileName;
242 result.exists = fs.existsSync (fileName);

"138

243 if (result.exists) {
244 var stats = fs.statSync (fileName);
245 result.isFile = stats.isFile ();
246 result.isDirectory = stats.isDirectory ();
247 }
248 else {
249 result.isFile = false;
250 result.isDirectory = false;
251 }
252
253 return (result);
254 }

The performRecovery function applies the auto-recovery processing logic to transform a recoverable
state to a stable state.!

256 /**
257 * Evaluate save state, initiating recovery if necessary.
258 * @param {Object} state State object with file names and existence flags
259 */
260 function performRecovery (state, removeEphemeral) {
261 // if ephemeral flag true, and ephemeral file exists, remove it
262 if ((removeEphemeral) && (state.ephemeral.exists)) {
263 fs.unlinkSync (state.ephemeral.name);
264 }
265
266 // if only backups exist, restore from backup
267 var baseAvailable = state.base.exists || state.ready.exists;
268 if (baseAvailable === false) {
269 if (state.tertiary.exists) {
270 if (state.backup.exists) {
271 fs.renameSync (state.backup.name, state.base.name);
272 fs.renameSync (state.tertiary.name, state.backup.name);
273 } else {
274 fs.renameSync (state.tertiary.name, state.base.name);
275 }
276 } else if (state.backup.exists) {
277 fs.renameSync (state.backup.name, state.base.name);
278 }
279
280 return;
281 }
282
283 // if tertiary state file exists, remove it
284 if (state.tertiary.exists) {
285 fs.unlinkSync (state.tertiary.name);
286 }
287
288 // if ready state file exists, update ready, base and backup files
289 if (state.ready.exists) {
290 var removeTertiary = false;
291
292
293 // if base and backup exist, rename to tertiary temporarily
294 if ((state.base.exists) && (state.backup.exists)) {
295 fs.renameSync (state.backup.name, state.tertiary.name);
296 removeTertiary = true;
297 }
298
299 // if base exists, rename to backup
300 if (state.base.exists) {
301 fs.renameSync (state.base.name, state.backup.name);
302 }
303

"139

304 // place ready state file in base and delete temporary tertiary file
305 fs.renameSync (state.ready.name, state.base.name);
306
307 // if temporary tertiary created, remove it
308 if (removeTertiary) {
309 fs.unlinkSync (state.tertiary.name);
310 }
311 }
312 }

The recovery processing includes a significant amount of file system manipulation in a deliberate set
of steps. This enables the persistent state to be inspected after unexpected interruptions, and for
recovery processing to progress irrespective of where the interruption occurred.!
At the end of the file is the list of exports.!

314 // exports
315 exports.readFileSync = readFileSync;
316 exports.writeFileSync = writeFileSync;
317 exports.safeGetState = safeGetState;
318 exports.safeRecover = safeRecover;
319 exports.safeReadFileSync = safeReadFileSync;
320 exports.safeWriteFileSync = safeWriteFileSync;

Format Utility for Javascript / Node.js

The SafeFileError message definitions use a replacement parameter syntax. Javascript does not have a
built in function that provides exactly this function, so one is provided. The function is fairly simple,
taking a base template string and a variable number of arguments, substituting the variable
arguments where the template has substitution markers. Substitutions are indexed, so an argument
can appear more than once in the template.!

Directory: chapter9/nodejs/format, file: format.js!
/**
 * Accept a base string with substitution markers and additional parameters
 * containing text to substitute into the base string. Markers use the syntax
 * {#} where # is a zero based index for the parameter ({0}, {1}, ...).
 *
 * @example
 * // returns "Syntax error on line 101: Missing ')'"
 * format ("Syntax error on line {0}: Missing '{1}'", "101", ")");
 *
 * @param {string} base Base string to substitute into
 * @param {...string} Substitution strings
 * @returns {string} Populated string
 */
function format (base)
{
 "use strict";
 // if base undefined or null, return empty string
 if ((base === undefined) || (base === null)) {
 return ("");
 } !
 // for each argument after base, replace in base string
 var result = base;
 for (var ctr = 1; ctr < arguments.length; ctr ++) {
 result = result.replace ("{" + (ctr - 1) + "}", arguments[ctr]);
 } !
 return (result);
}

"140

!
// exports
exports.format = format;

Implementation of safeFile for Python

The Python implementation is a single file (plus the normal __init__.py).!
Directory: chapter9/python/safefile, file: safefile.py!

The leading content defines the constants and messages.!
 1 “""
 2 File processing functions for managed files.
 3
 4 readFile - Read a file
 5 writeFile - Write a file
 6 safeGetState - Get the recovery state for a file
 7 safeRecover - Initiate recovery for a file
 8 safeReadFile - Read with recovery support
 9 safeWriteFile - Write with recovery support
10 """
11 from os import unlink, rename
12 from os.path import exists, isfile, isdir
13
14 # error and message constants
15 NO_ERROR = 0
16 INVALID_NAME= 100
17 DOES_NOT_EXIST = 101
18 IS_NOT_A_FILE = 102
19 READ_ERROR = 103
20 WRITE_ERROR = 104
21 SAFE_NORMAL = 0
22 SAFE_RECOVERABLE = 110
23 SAFE_INTERVENE = 111
24
25 MSG_INVALID_NAME = "File name missing or not valid"
26 MSG_IS_NOT_A_FILE = "File {0} is not a file"
27 MSG_DOES_NOT_EXIST = "File {0} does not exist"
28 MSG_READ_ERROR = "Error reading file {0}: {1}"
29 MSG_WRITE_ERROR = "Error writing file {0}: {1}"

The SafeFileError class is a subclass of Exception, defining two class instance variables to hold the
error code and error message.!

31 class SafeFileError (Exception):
32 """
33 Error definition thrown when an error occurs.
34 Args
35 code: Error number
36 message: Text message, suitable for display
37 """
38 def __init__ (self, code, message):
39 super (SafeFileError, self).__init__ ()
40 self.code = code
41 self.message = message

The readFile function implements a synchronous file read, raising appropriate exceptions if any
parameters are invalid or an error occurs. If no errors occur, the data from the file is returned.!

43 def readFile (file):
44 """
45 Read file.
46 Args:
47 file (str): Path / file name of file to read.
48 Returns:

"141

49 data (str): Data read.
50 Raises:
51 SafeFileError
52 """
53 if file is None:
54 raise SafeFileError (INVALID_NAME, MSG_INVALID_NAME)
55
56 info = _getFileInfo (file)
57 if not info["exists"]:
58 raise SafeFileError (DOES_NOT_EXIST, MSG_DOES_NOT_EXIST.format (file))
59
60 if not info["isFile"]:
61 raise SafeFileError (IS_NOT_A_FILE, MSG_IS_NOT_A_FILE.format (file))
62
63 # read data file
64 try:
65 data = open (file).read ()
66 return data
67 except IOError as e:
68 raise SafeFileError (READ_ERROR,
69 MSG_READ_ERROR.format (file, e.strerror))

The writeFile function synchronously writes the provided content to the specified file name. If no data
is provided, the file will be written as an empty file. If the file already exists, it is replaced.!

71 def writeFile (file, data):
72 """
73 Write file.
74 Args:
75 file (str): Path / file name to write.
76 data (str): Data to write.
77 Raises:
78 SafeFileError
79 """
80 if file is None:
81 raise SafeFileError (INVALID_NAME, MSG_INVALID_NAME)
82
83 info = _getFileInfo (file)
84 if info["exists"] and not info["isFile"]:
85 raise SafeFileError (IS_NOT_A_FILE, MSG_IS_NOT_A_FILE.format (file))
86
87 # read data file
88 try:
89 file = open (file, "w")
90 file.write (data)
91 file.close ()
92 except IOError as e:
93 raise SafeFileError (WRITE_ERROR,
94 MSG_WRITE_ERROR.format (file, e.strerror))

The readFile and writeFile functions do not implement auto-recovery features. They are used for files
that do not require the auto-recovery capabilities. However, their error messages are consistent with
the safeReadFile and safeWriteFile functions, enabling easy transition between the interfaces.!
The safeGetState function determines the persistent state of the file and its recoverable elements. The
returned status indicates whether the state is stable, auto-recoverable, or not auto-recoverable.!

 96 def safeGetState (file):
 97 """
 98 Get the status of a file in the recovery context.
 99 Args:
100 file File to get status for.
101 Retuns:
102 State, can be an error or recovery state.

"142

103 """
104 if file is None:
105 return INVALID_NAME
106
107 info = _getFileInfo (file)
108 if info["exists"] and not info["isFile"]:
109 return IS_NOT_A_FILE
110
111 state = _getState (file)
112 return state["status"]

The safeRecover function provides an interface that allows the auto-recovery processing to be initiated.!
114 def safeRecover (file):
115 """
116 Initiate the recovery processing for a file.
117 Args:
118 file File to performing processing for.
119 Raises:
120 SafeFileError
121 """
122 if file is None:
123 raise SafeFileError (INVALID_NAME, MSG_INVALID_NAME)
124
125 info = _getFileInfo (file)
126 if info["exists"] and not info["isFile"]:
127 raise SafeFileError (IS_NOT_A_FILE, MSG_IS_NOT_A_FILE.format (file))
128
129 state = _getState (file)
130 if state["status"] == DOES_NOT_EXIST:
131 raise SafeFileError (DOES_NOT_EXIST, MSG_DOES_NOT_EXIST.format (file))
132
133 _performRecovery (state, True)

The safeReadFile function reads the contents from a file. However, it first determines whether auto-
recovery processing is required, and if so, it initiates the recovery processing.!

135 def safeReadFile (file):
136 """
137 Read a file, applying recovery processing if necessary.
138 Args:
139 file File to read.
140 Returns:
141 Data read from file.
142 Raises:
143 SafeFileError
144 """
145 if file is None:
146 raise SafeFileError (INVALID_NAME, MSG_INVALID_NAME)
147
148 info = _getFileInfo (file)
149 if info["exists"] and not info["isFile"]:
150 raise SafeFileError (IS_NOT_A_FILE, MSG_IS_NOT_A_FILE.format (file))
151
152 state = _getState (file)
153 if state["status"] == SAFE_RECOVERABLE:
154 _performRecovery (state, True)
155
156 readFile (file)

The safeWriteFile function creates the recovery enabled elements as it saves the content. It determines
the recovery state, performs clean up and recovery preparation steps, writes the content, and
completes recovery preparation.!

158 def safeWriteFile (file, data):

"143

159 """
160 Write data to a file, applying recovery enabling processing.
161 Args:
162 file File to write to.
163 data Data to write.
164 Raises:
165 SafeFileError
166 """
167 if file is None:
168 raise SafeFileError (INVALID_NAME, MSG_INVALID_NAME)
169
170 info = _getFileInfo (file)
171 if info["exists"] and not info["isFile"]:
172 raise SafeFileError (IS_NOT_A_FILE, MSG_IS_NOT_A_FILE.format (file))
173
174 # get current file system state, and auto-recover if necessary
175 state = _getState (file)
176
177 # store data in well defined ephemeral file to allow manual recovery.
178 # If file already exists, remove it (failed prior recovery).
179 if state["ephemeral"]["exists"]:
180 unlink (state["ephemeral"]["name"])
181
182 writeFile (state["ephemeral"]["name"], data)
183 state["ephemeral"]["exists"] = True
184
185 # if ready state file already exists, recover prior state
186 if state["ready"]["exists"]:
187 _performRecovery (state, False)
188
189 rename (state["ephemeral"]["name"], state["ready"]["name"])
190
191 # refresh state and process recovery to set file system state
192 state = _getState (file)
193 _performRecovery (state, True)

The getState function examines the persistent state of the recovery environment to determine what
state (stable, auto-recoverable, not auto-recoverable) it is in.!

195 def _getState (file):
196 """
197 Get file state.
198 Args:
199 file File to get state for.
200 Returns:
201 State object containing list of recovery files and overall status.
202 """
203 state = {}
204 state["ephemeral"] = _getFileInfo (file + ".eph")
205 state["ready"] = _getFileInfo (file + ".rdy")
206 state["base"] = _getFileInfo (file)
207 state["backup"] = _getFileInfo (file + ".bak")
208 state["tertiary"] = _getFileInfo (file + ".bk2")
209
210 if state["ephemeral"]["exists"]:
211 state["status"] = SAFE_INTERVENE
212 elif state["ready"]["exists"] or state["tertiary"]["exists"]:
213 state["status"] = SAFE_RECOVERABLE
214 elif state["base"]["exists"]:
215 state["status"] = SAFE_NORMAL
216 else:
217 if state["backup"]["exists"]:
218 state["status"] = SAFE_RECOVERABLE
219 else:

"144

220 state["status"] = DOES_NOT_EXIST
221
222 return state

The getFileInfo function provides the meta information for a file name. This information is used to
determine validity of requests (e.g., not allowing existing directories to be processed as files).!

224 def _getFileInfo (file):
225 """
226 Get information for a file (name, exists, is a file or directory.
227 Args:
228 file File to get information for.
229 Returns:
230 Dict with file info (name, exists, isFile, isDirectory)
231 """
232 info = {}
233 info["name"] = file
234 info["exists"] = exists (file)
235 info["isFile"] = isfile (file)
236 info["isDirectory"] = isdir (file)
237 return info

The performRecovery function applies the auto-recovery processing logic to transform a recoverable
state to a stable state.!

239 def _performRecovery (state, removeEphemeral):
240 """
241 Initiate recovery processing.
242 Args:
243 state State object with recovery file information.
244 removeEphemeral Flag, remove ephemeral if found or not
245 “""
246 # if ephemeral flag true, and ephemeral file exists, remove it
247 if removeEphemeral and state["ephemeral"]["exists"]:
248 unlink (state["ephemeral"]["name"])
249
250 # if only backups exist, restore from backup
251 baseAvailable = state["base"]["exists"] or state["ready"]["exists"]
252 if not baseAvailable:
253 if state["tertiary"]["exists"]:
254 if state["backup"]["exists"]:
255 rename (state["backup"]["name"], state["base"]["name"])
256 rename (state["tertiary"]["name"], state["backup"]["name"])
257 else:
258 rename (state["tertiary"]["name"], state["base"]["name"])
259 elif state["backup"]["exists"]:
260 rename (state["backup"]["name"], state["base"]["name"])
261 return
262
263 # if tertiary state file exists, remove it
264 if state["tertiary"]["exists"]:
265 unlink (state["tertiary"]["name"])
266
267 # if ready state file exists, update ready, base and backup files
268 if state["ready"]["exists"]:
269 removeTertiary = False
270
271 # if base and backup exist, rename to tertiary temporarily
272 if state["base"]["exists"] and state["backup"]["exists"]:
273 rename (state["backup"]["name"], state["tertiary"]["name"])
274 removeTertiary = True
275
276 # if base exists, rename to backup
277 if state["base"]["exists"]:
278 rename (state["base"]["name"], state["backup"]["name"])

"145

279
280 # place ready state file in base and delete temporary tertiary file
281 rename (state["ready"]["name"], state["base"]["name"])
282
283 # if temporary tertiary created, remove it
284 if removeTertiary:
285 unlink (state["tertiary"]["name"])

The recovery processing includes a significant amount of file system manipulation in a deliberate set
of steps. This enables the persistent state to be inspected after unexpected interruptions, and for
recovery processing to progress irrespective of where the interruption occurred.!

Test Cases for safeFile

A hardware failure, power failure, or other failure could occur at any point during the processing of
the file management activities. This can leave a wide variety of states possible. To ensure the different
states are properly recognized and handled, test suites are provided for each of the safeFile functions.
Each test creates the files representing the starting state, calls the function to be tested, verifies that all
possible state files are present/not-present as applicable to the test case, and cleans up after
completing the test.!
The test cases are not detailed here, but are available as part of the project content for both Javascript /
Node.js (using mocha) and Python (using pytest) on GitHub, and are executed using automated testing.!

Example: Using Robust Configuration File Capabilities
A skeleton program is used for the example, showing the following activities.!

• Determine the state of its configuration file at the start of the program. This provides the
opportunity to direct user action if needed.!

• Load the configuration.!
• Make changes to the configuration.!
• Write the configuration.!

The program logic reads a simple inventory file, updates the inventory count for each of the items,
and writes out the updated content. !

Implementation Using Javascript / Node.js

The leading content sets the variables and displays a starting message. Lines 17-28 check the
persistent state, and some typical courses of action are shown. Lines 30-42 show the loading and
validation processing, including error handling for invalid content. Lines 44-48 provide placeholder
logic, representing the program content. Lines 50-59 show preparing and saving the updated content.
Finally, line 61 displays an end message.!

Directory: chapter9, file: inventory.js!
 1 /*
 2 * Inventory management simulation
 3 */
 4 var safeFile = require ("ujs-safefile").safeFile;
 5 var SafeFileError = require ("ujs-safefile").SafeFileError;
 6 var cc = SafeFileError.prototype;
 7 var jsonValidate = require ("ujs-jsonvalidate");
 8 var validate = jsonValidate.validate;
 9

"146

10 // starting message
11 console.log ("Starting processing");
12
13 // inventory files
14 var dataFile = "inventory.json";
15 var schema = "inventory_schema.json";
16
17 // determine current state
18 var status = safeFile.safeGetState (dataFile);
19 if (status === cc.SAFE_INTERVENE) {
20 console.log ("Inventory file requires administrator action");
21 process.exit (1);
22 } else if (status === cc.DOES_NOT_EXIST) {
23 console.log ("Inventory file missing");
24 process.exit (1);
25 } else if (status === cc.SAFE_RECOVERABLE) {
26 safeFile.safeRecover (dataFile);
27 console.log ("Inventory file auto recovered");
28 }
29
30 // load and validate file content
31 var inventory = null;
32 validate (dataFile, schema, null, null, function (code, data, message) {
33 // if invalid, print error message
34 if (code !== jsonValidate.VALID) {
35 console.log ("Inventory file validation failed");
36 console.log ("Error: " + message);
37 process.exit (1);
38 }
39
40 // assign content
41 inventory = data;
42 });
43
44 // program content goes here ...
45 // to show updates, increment item count by 1 for all items
46 for (var ctr = 0; ctr < inventory.length; ctr ++) {
47 inventory[ctr].count = inventory[ctr].count + 1;
48 }
49
50 // apply formatting to content before writing when
51 // content is intended to be user readable/editable
52 var output = JSON.stringify (inventory, null, 2);
53
54 // write using recoverable interface
55 try {
56 safeFile.safeWriteFileSync (dataFile, output);
57 } catch (e) {
58 console.log ("Error writing content " + e.message);
59 }
60
61 console.log ("Completed processing");

Lines 50-52 are relevant when the JSON content is intended for user reading or editing. The stringify
function will separate the content into lines and provide indenting. If this is not used, then the
content will be emitted using the normal JSON serializer which creates a continuous output. Either
form can be read by the JSON parser.!
This program can be modified to try out a variety of conditions by updating the data file and/or
changing the dataFile and schema variables on lines 14-15 to reference different files. Using the unit test

"147

cases as examples (test/test-safeFile.js from the ujs-safefile-nodejs repository), different persistent
configurations can be tested.!

Implementation using Python

The leading content sets the variables and displays a starting message. Lines 12-26 check the
persistent state, and some typical courses of action are shown. Lines 28-35 show the loading and
validation processing, including error handling for invalid content. Lines 37-40 provide placeholder
logic, representing the program content. Lines 42-50 show preparing and saving the updated content.
Finally, line 52 displays an end message.!

Directory: chapter9, file: inventory.py!
 1 """
 2 Inventory management simulation
 3 """
 4 import sys
 5 from safefile import safefile, SafeFileError
 6 from jsonvalidate import validate, VALID
 7 from json import dumps
 8
 9 # starting message
10 print ("Starting processing")
11
12 # inventory files
13 dataFile = "inventory.json";
14 schema = "inventory_schema.json";
15
16 # determine current state
17 status = safefile.safeGetState (dataFile);
18 if status == safefile.SAFE_INTERVENE:
19 print ("Inventory file requires administrator action")
20 sys.exit (1)
21 elif status == safefile.DOES_NOT_EXIST:
22 print ("Inventory file missing")
23 sys.exit (1)
24 elif status == safefile.SAFE_RECOVERABLE:
25 safefile.safeRecover (dataFile)
26 print ("Inventory file auto recovered")
27
28 # load and validate file content
29 inventory = None;
30 code, inventory, message = validate (dataFile, schema, None, None)
31 # if invalid, print error message
32 if code != VALID:
33 print ("Inventory file validation failed")
34 print ("Error: " + message)
35 sys.exit (1)
36
37 # program content goes here ...
38 # to show updates, increment item count by 1 for all items
39 for item in inventory:
40 item['count'] = item['count'] + 1
41
42 # apply formatting to content before writing when
43 # content is intended to be user readable/editable
44 output = dumps (inventory, indent = 2, sort_keys = True);
45
46 # write using recoverable interface
47 try:
48 safefile.safeWriteFile (dataFile, output)
49 except SafeFileError as e:

"148

50 print ("Error writing content " + e.message)
51
52 print ("Completed processing")

Lines 42-44 are relevant when the JSON content is intended for user reading or editing. The indent
argument specified on the dumps function will direct separation of the content onto lines and provide
indenting. If this is not used, then the content will be emitted using the normal JSON serializer which
creates a continuous output. Either form can be read by the JSON parser.!
This program can be modified to try out a variety of conditions by updating the data file and/or
changing the dataFile and schema variables on lines 13-14 to reference different files. Using the unit test
cases as examples (test/test-safefile.py from the ujs-safefile-python repository), different persistent
configurations can be tested.!

Multiple Data File Programs
In the organization / employee example, the data was stored in two separate files. The safeFile library
implementation included with the book materials can be used to manage multiple files, but as
independent files, not as a coordinated set of files.!
To support managing a set of files as a coordinated unit, meaning storage and recovery apply to the
set as a whole rather than as independent files, additional features need to be considered, including,!

• The ephemeral state for the complete set of coordinated files needs to be established before any
changes to the set of existing files are applied.!

• The final state for all files in the coordinated set needs to be the same for all files in the set. This
allows subsequent inspection to be based on a stable inspection criteria. For example, each file will
have a base file, and all or none will have a backup file (base + .bak).!

• The reassignment of existing files to different stages must be performed in a manner that can be
recognized by the recovery process. This will allow the recovery process to perform automatic
recovery where the complete process did not complete.!

• A failure of writing for one ephemeral file will be considered a failure for the group of
coordinated files. A design consideration would be the addition of an interim state between
ephemeral and ready, applicable for recognizing each individual file as being in the ready state,
where the coordinated set may not be. This would be of assistance to manual inspection, or auto-
recovery scenarios where some ephemeral files can be regenerated.!

The considerations for the different interaction models (read at start / write at end, user / program
directed, auto-save) apply to the multiple file design as well.  

"149

Appendix A: Installing the Book Materials

The examples , sample source code, and tools are available to download and access online.!
To download the examples and source code for all programs, download the package for your
operating system from the Using JSON Schema website,!

http://usingjsonschema.com!
For Linux, OS X and Unix variants, the package is a compressed tar file. Download the package, and
assuming the default download location is used (~/Downloads), then in a Terminal use the following
commands. The following command places the content in a sub-directory of your home directory.!

cd ~
gzip xvf Downloads/usingjsonschema.gzip

On Windows, download the package. by default, it will be placed in the directory!
%HOMEDRIVE%%HOMEPATH%\Downloads!

where %HOMEDRIVE%%HOMEPATH% are similar to C:\Users\Fred. You can make the package a
sub-directory of your home directory, or place it elsewhere.!

cd %HOMEDRIVE%%HOMEPATH%
unzip Downloads\usingjsonschema.zip

The directory structure for the contents will be created as part of the package contents being
extracted.!

Installing the Syntax and Validation Tools
These tools are installed from the Node.js and Python repositories, using the package management
utilities for each. You can choose to install either one, or install both.!
For Node.js, if the Node.js runtime platform is not already installed, see Appendix C to install it. When
installed, use the following commands to install the jsonsyntax and validate tools.!

npm -g install ujs-jsonsyntax
npm -g install ujs-jsonvalidate

The -g parameter instructs npm to install the tools into the global installation location, allowing the
tools to be available when used in any directory on the system.!
For Python, if the Python platform is not already installed, see Appendix D to install it. When installed,
use the following commands to install the jsonsyntax and validate tools.!

pip install ujs-jsonsyntax
pip install ujs-jsonvalidate

For versions of Python before 3.3, you may have to add the scripts directory under your Python
installation directory to the system path to use the commands from any directory.!

Using Git to Access the Projects
All of the source code and examples are available from GitHub under the Using JSON Schema project
at,!

https://github.com/usingjsonschema!
A project navigation page is provided at,!

"150

http://usingjsonschema.com/
https://usingjsonschema.github.io/

https://usingjsonschema.github.io!
The source code can be accessed directly from each repository web page, or git clone can be used to
create a local instance in your own git repository. A zipped version of the repository can also be
downloaded using the Download ZIP button.!
The GitHub content includes development content, including unit tests, that will be helpful for
experimentation with the projects. The content can be used with either command line or integrated
development environment (IDE) tools.  

"151

https://usingjsonschema.github.io/

Appendix B: Resources

JSON Schema Resources
The JSON Schema home website is at http://json-schema.org and contains descriptions of the
technologies and links to various resources.!
The format for JSON content is published as RFC 7159 by the IETF (Internet Engineering Task Force)
and is available at!

http://tools.ietf.org/html/rfc7159!
The JSON Schema core and validation draft specifications are also available through the IETF at,!

Core specification!
http://tools.ietf.org/html/draft-zyp-json-schema-04!
Validation specification!
http://tools.ietf.org/html/draft-fge-json-schema-validation-00!

A message group for JSON Schema use, direction, and general discussion, is available at!
https://groups.google.com/forum/#!forum/json-schema!

ECMAScript Resources
The ECMAScript specification (ECMA 262) is available at!

http://www.ecma-international.org/publications/standards/Ecma-262.htm!
The specification includes the regular expression definitions used by JSON Schema.!

Postal Address Resources
Canadian provinces and territories, from Canada Post!

http://www.canadapost.ca/tools/pg/manual/PGaddress-e.asp#1382088!
USA states and territories, from the US Postal Service!

https://www.usps.com/send/official-abbreaviations.html!
Mexico states, from the Universal Postal Union!

http://www.upu.int/fileadmin/documentsFiles/activities/addressingUnit/mexEn.pdf 

"152

http://http://json-schema.org
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/draft-zyp-json-schema-04
http://tools.ietf.org/html/draft-fge-json-schema-validation-00
https://groups.google.com/forum/#!forum/json-schema
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.canadapost.ca/tools/pg/manual/pgaddress-e.asp#1382088
https://www.usps.com/send/official-abbreaviations.html
http://www.upu.int/fileadmin/documentsFiles/activities/addressingUnit/mexEn.pdf

Appendix C: Node.js Installation and Introduction

Node.js is a runtime platform that includes the V8 Javascript Engine.!
• The Node.js project is an open source project, with project management led by Joyent.!
• The V8 Javascript Engine project is an open source project, with project management led by Google.!

The examples use Node.js to provide access to the Javascript engine as well as the modules packaged
with Node.js for file system and networking functions.!
There is no cost for the use of either of these technologies for the examples used in this book.!

Node.js Installation
Node.js is available for many platforms. Short instructions are provided for some common platforms
here. Full instructions for all platforms is available at,!

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager!

Node.js Install (Ubuntu)

For Ubuntu 14.04 (April 2014 release), the Ubuntu repository contains a 0.10.x release of Node.js which
can be used for the book software. To install, use the following commands.!

sudo apt-get update
sudo apt-get -y install nodejs
sudo apt-get -y install npm

For earlier versions of Ubuntu, to install the current stable release of Node.js software, open a Terminal
window and use the following commands,!

sudo apt-get update
sudo apt-get -y install python-software-properties
sudo add-apt-repository ppa:chris-lea/node.js
sudo apt-get update
sudo apt-get -y install nodejs

The update command updates the package manager catalog.!
The python-software-properties package supports the add-apt-repository command.!
The add-apt-repository command allows external package management repositories to be accessed. In
this case the command adds the Node.js distribution repository to the apt-get directory.!
The second update command updates the catalog to include the new repository information.!
The final command installs Node.js.!

Node.js Install (Fedora)

To install the Node.js software on Fedora, open a Terminal window and use the following commands,!
sudo yum install nodejs npm

Node.js Install (Windows)

To acquire the Node.js software for Windows, open a web browser and go to!
http://nodejs.org/download!

"153

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
http://nodejs.org/download

This is the primary Node.js download location. In the table of choices, on the Windows Installer (.msi)
row, select the appropriate download for your system (32-bit or 64-bit). Save the installer on your
system and run it after the download completes. The install setup wizard will guide the process of
installing the runtime.!

• The End-User License Agreement page includes the license information for Node.js and its
dependencies.!

• The Destination Folder page allows setting the install location, the default is suitable.!
• The Custom Setup page allows selection of install content. Leave all items selected.!
• When the Ready to install Node.js page is displayed, press Install.!

At the completion of the installation, the Node.js runtime and Node Package Manager (npm) will be
ready to use.!

Introduction to Node.js
For readers not familiar with Node.js, the following will provide some basic information to assist in
reading the Javascript versions of the programs presented in this book.!
Node.js packages up a set of Javascript extensions and provides a runtime library for a variety of
functions. Some of the constructs, like modules and require, can also be used outside Node.js, but are
inherent parts of any non-trivial Node.js program.!

Asynchronous Programming

Node.js supports both synchronous and asynchronous programming for many functions, however
some functions are asynchronous only. This is part of the overall architecture of Node.js, and how it
enables multiple tasks to be worked on simultaneously. A common pattern to replace the traditional,!

function someFunction (arg) { return (0); } !
result = someFunction (arg);
if (result === 0) { console.log ("ok");

is to use a callback function that receives the result in the callback.!
function someFunction (arg) { callback (0); } !
function callback (result) {
 if (result === 0) { console.log ("ok");
}
someFunction (arg, callback);

Alternatively, and very commonly, the callback function will be part of the call.!
function someFunction (arg) { callback (0); } !
someFunction (arg, function callback (result) {
 if (result === 0) { console.log ("ok");
});

Asynchronous programming logic can be nested to ensure that tasks occur in a sequential manner, or
the tasks can be run in parallel and coordinated as a group to do processing only after all tasks have
been completed. An example of the latter of these cases is shown in the httpFetch function in the
validate module from the ujs-json-validate project.!

Modules

"154

Node.js uses a module concept. Global variables, those not declared with a var statement, are not used
in the any of the programs in this book. If a variable is to be shared outside its module, it will use the
Node.js exports mechanism.!

Require

The require function used at the start of the programs is part of the module support of Node.js. It is
similar to import or include statements from other languages. They include the content of another
module for use in this program. For user supplied modules, the path to the module is included (e.g.,
“./mymodule”). Modules included from the Node.js platform or from other sources use only the
name (e.g., “http”). This distinction provides the runtime with direction on how to search for the
module.!
Typically the require statement will be part of a var declaration. When a module is resolved, the result
of the resolution can be assigned so that subsequent interactions can be performed. Two common
patterns are seen.!

var http = require ("http");

This form assigns the module to the variable http. When the program want to call a function supplied
by the http module, is can use syntax http.request (…) to initiate the call. Note the variable can be any
name, but typically the variable name and module name will be similar in cases like these.!
The second pattern assigns an element within the module. For example,!

var format = require ("./format").format;

In this case, the variable format is being assigned the format function from the module. This syntax
allows subsequent use of statements such as,!

format (base, 100);

In contrast, if just the module was assigned, then the qualifier would be required.!
format.format (base, 100);

Exports

Using exports (and module.exports) enables elements to be made visible outside the module they are
defined in. This can be applied to both functions and variables. Any element that is not included in
the exports object is private to the module.  

"155

Appendix D: Python Installation

Python is available in two versions, 2.x and 3.x. Either version can be used with the software and
examples provided in this book.!

Linux and OS X

For Linux and OS X, Python is installed as part of the base operating system for most distributions.
However, additional versions can be installed alongside the version provided. Some distributions
include version 2 and 3 installed, using python as the command for version 2.x.x and python3 as the
command for version 3.x.x. You can use the following commands to determine the installed versions.!

python –version
python3 --version

All Platforms

If your Linux or OS X version is an older release, or if your operating system does not have Python
already installed, instructions and downloads are available at,!

https://www.python.org/downloads/!
For Python 2, version 2.7 or later is recommended.!
For Python 3, version 3.4 or later is recommended (as this version bundles the pip package manager).!

Python Package Management
Installing and managing Python packages is performed using the pip program. General information
on pip is available at!

http://pip.readthedocs.org/en/latest/index.html#!
If Python 3.4.0 or later is used, the installation information that follows can be ignored, since the pip
package manager is installed with the base installation.!
If using Python 2 or a version of Python 3 earlier than 3.4, then pip is a separate installation step. To
install pip, see the installation page!

http://pip.readthedocs.org/en/latest/installing.html!
The pip package manager is the successor to easy-install. If the installation instructions for a package
include use of easy-install then substitute pip where easy-install is referenced.  

"156

https://www.python.org/downloads/
http://pip.readthedocs.org/en/latest/index.html
http://pip.readthedocs.org/en/latest/installing.html

About the Author

Joe McIntyre is a computing enthusiast and software architect with 25 years of experience, working in
the computing, telecommunications, and public utility industries.!
Senior Technical Staff Member at IBM Corporation, Architecture Leader for the Communications
Sector Industry Frameworks. Responsible for service delivery platform (SDP) architecture, he led the
Cloud Services Provider solution architecture definition for the IBM Cloud Computing Reference
Architecture. Previously at IBM, Joe was Chief Architect for the WebSphere family of products for the
telecommunications industry and prior projects included distributed systems management, virtual
desktop infrastructure, Java/JVM technologies, and object-oriented tooling/code generation
technologies. He has approximately 75 issued patents. !
Joe has also been active contributor and leader in standards activities, including representing IBM to
the United States National Body for the International Standards Organization (ISO) in the Cloud
Computing activity under JTC1/SC38. He was the editor of the 3GPP/ETSI Parlay X Web Services
specifications, and a primary contributor to 3GPP, ETSI and Open Mobile Alliance standards activities
for Web Services. He chaired the Web Services Working Group within The Parlay Group, and was
convenor for the 3GPP CT5 (Core Networking and Terminal Group working group 5).!
Joe graduated from Fanshawe College in Management Information Systems, and currently resides in
Round Rock, Texas, USA.!

Other Publications by the Author
Author of the IBM Redguide, “IBM SmartCloud: Becoming a Cloud Services Provider” (ISBN
9780738438054), published in December 2012 and available as a PDF or EPUB download at http://
www.redbooks.ibm.com/abstracts/redp4912.html and from the Apple iBookstore.!
Co-author, “Extending the Service Bus for Successful and Sustainable IPTV Services”, IEEE
Communications Magazine (Volume 48, Issue 8), August 2008.!
Foreword, “JavaBeans for Dummies” (ISBN 0764501534), published 1997 by IDG Books Worldwide Inc.

"157

http://www.redbooks.ibm.com/abstracts/redp4912.html

	Using JSON Schema
	￼Copyright
	Source Code Licenses

	￼Preface
	￼Web Resources
	Audiences
	What this Book Covers
	Required Knowledge, Equipment and Software
	Acknowledgments
	Conventions Used in the Book
	Using the Programs Provided
	Acquiring and Installing the Accompanying Materials

	￼Table of Contents
	￼1. Introduction
	Use of Schema Definitions
	￼Benefits of Using a Schema
	What A Schema Does Not Do
	Validation as a Process

	￼2. JSON
	Structure of JSON Content
	JSON Single Object
	JSON Multiple Object Types
	JSON Array
	JSON Named Array
	JSON Multiple Object Types and Arrays
	Syntax Checking JSON Content

	￼3. JSON Schema
	Constructing a Schema
	￼Structure of a JSON Schema Definition
	Style
	Values for the “$schema” Element
	JSON Schema Empty Structure
	JSON Schema Examples and Validation Tools
	JSON Schema for a Simple Object (3A)
	Content Constraints for the Simple Object (3B)
	JSON Schema for an Array (3C)
	JSON Schema for a Named Object (3D)
	JSON Schema for Mixed Objects and Arrays (3E)
	Patterns for Properties (3F)
	Dependencies for Properties (3G)
	Choices: allOf, oneOf, anyOf (3H)
	AllOf
	OneOf
	AnyOf
	The Negative Constraint: not
	Object and Array Constraints (3I)
	Value Constraints (3J)
	JSON References (Internal) (3K)
	JSON References (External) and the id Keyword (3L)

	￼4. Conditional Content
	Mutually Exclusive Properties
	Dependent Properties
	Selector Driven Schemas
	Alternative Implementations for Selector Driven Schemas
	Uses for the Conditional Content Approaches

	￼5. Configuration Files
	Example Configuration File
	Programs Consuming the Configuration File
	Summary

	￼6. Simple Data Management
	Usage Examples
	Capabilities for Simple Data Management
	Example: Organization and Employee Data
	Valid Data, Invalid Cross-Reference
	Additional Custom Validation
	Custom Validation Processor
	Validation Data Examples
	Persistent State Validation Versus In Flight Validation
	Growing Into a Database
	Domain Specific Validators

	￼7. Designing Software for JSON Message Exchange
	Implementing Programs that use JSON Message Exchange
	Javascript / Node.js Implementation
	Python Implementation
	Validation Proxy Server

	￼8. Command Line Validation Tool
	Entry Point: main.js / main.py
	Validation Processing: validate.js / validate.py
	Using the Tools in Shells and Scripts

	￼9. Designing Software to Use JSON Files
	Validation in Programs
	In Memory State of JSON Content
	Persistent State Choices
	Program Interaction Models for Persistent Storage
	Persistent Storage of JSON Content
	Recovery Enabled File Storage
	￼Library: safeFile
	Example: Using Robust Configuration File Capabilities
	Multiple Data File Programs

	￼Appendix A: Installing the Book Materials
	Installing the Syntax and Validation Tools
	Using Git to Access the Projects

	￼Appendix B: Resources
	JSON Schema Resources
	ECMAScript Resources
	Postal Address Resources

	￼Appendix C: Node.js Installation and Introduction
	Node.js Installation
	Introduction to Node.js

	￼Appendix D: Python Installation
	Python Package Management

	￼About the Author
	Other Publications by the Author

